A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Genome Identification and Expression Profiles in Response to Nitrogen Treatment Analysis of the Class I CCoAOMT Gene Family in Populus. | LitMetric

Genome Identification and Expression Profiles in Response to Nitrogen Treatment Analysis of the Class I CCoAOMT Gene Family in Populus.

Biochem Genet

State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, People's Republic of China.

Published: April 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lignin is essential for the characteristics and quality of timber. Nitrogen has significant effects on lignin contents in plants. Nitrogen has been found to affect wood quality in plantations and lignin content in plants. Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is an important methyltransferase in lignin biosynthesis. However, the classification of woody plant CCoAOMT gene family members and the regulation mechanism of nitrogen are not clear. Bioinformatics methods were used to predict the members, classification, and transcriptional distribution of the CCoAOMT gene family in Populus trichocarpa. The results showed that there were five PtCCoAOMTs identified, and they could be divided into three sub-groups according to their structural and phylogenetic features. The results of tissue expression specificity analysis showed that: PtCCoAOMT1 was highly expressed in roots and internodes; PtCCoAOMT2 was highly expressed in roots, nodes, and internodes, PtCCoAOMT3 was highly expressed in stems; PtCCoAOMT4 was highly expressed in young leaves, and, PtCCoAOMT5 was highly expressed in roots. Different forms and concentrations of nitrogen had varying effects on the expression patterns of genes in different plant tissue types. The results of real-time PCR showed that the expression levels of PtCCoAOMT1 and PtCCoAOMT2 in stems increased significantly under different forms of nitrogen. PtCCoAOMT3 and PtCCoAOMT4 were induced by nitrate nitrogen in upper stems and lower leaves, respectively. PtCCoAOMT4 and PtCCoAOMT5 were induced by different concentrations of nitrate nitrogen in lower stems and roots, respectively. These results could provide valuable information for revealing the differences between functions and expression patterns of the various CCoAOMT gene family members under different forms and concentrations of exogenous nitrogen in poplar.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10528-021-10112-4DOI Listing

Publication Analysis

Top Keywords

highly expressed
20
ccoaomt gene
16
gene family
16
expressed roots
12
nitrogen
9
family populus
8
family members
8
forms concentrations
8
expression patterns
8
nitrate nitrogen
8

Similar Publications