Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background High breast density increases breast cancer risk and lowers mammographic sensitivity. Supplemental MRI screening improves cancer detection but increases the number of false-positive screenings. Thus, methods to distinguish true-positive MRI screening results from false-positive ones are needed. Purpose To build prediction models based on clinical characteristics and MRI findings to reduce the rate of false-positive screening MRI findings in women with extremely dense breasts. Materials and Methods Clinical characteristics and MRI findings in Dutch breast cancer screening participants (age range, 50-75 years) with positive first-round MRI screening results (Breast Imaging Reporting and Data System 3, 4, or 5) after a normal screening mammography with extremely dense breasts (Volpara density category 4) were prospectively collected within the randomized controlled Dense Tissue and Early Breast Neoplasm Screening (DENSE) trial from December 2011 through November 2015. In this secondary analysis, prediction models were built using multivariable logistic regression analysis to distinguish true-positive MRI screening findings from false-positive ones. Results Among 454 women (median age, 52 years; interquartile range, 50-57 years) with a positive MRI result in a first supplemental MRI screening round, 79 were diagnosed with breast cancer (true-positive findings), and 375 had false-positive MRI results. The full prediction model (area under the receiver operating characteristics curve [AUC], 0.88; 95% CI: 0.84, 0.92), based on all collected clinical characteristics and MRI findings, could have prevented 45.5% (95% CI: 39.6, 51.5) of false-positive recalls and 21.3% (95% CI: 15.7, 28.3) of benign biopsies without missing any cancers. The model solely based on readily available MRI findings and age had a comparable performance (AUC, 0.84; 95% CI: 0.79, 0.88; = .15) and could have prevented 35.5% (95% CI: 30.4, 41.1) of false-positive MRI screening results and 13.0% (95% CI: 8.8, 18.6) of benign biopsies. Conclusion Prediction models based on clinical characteristics and MRI findings may be useful to reduce the false-positive first-round screening MRI rate and benign biopsy rate in women with extremely dense breasts. Clinical trial registration no. NCT01315015 © RSNA, 2021 See also the editorial by Imbriaco in this issue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.2021210325 | DOI Listing |