A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Auxeticity in biosystems: an exemplification of its effects on the mechanobiology of heterogeneous living cells. | LitMetric

Auxeticity in biosystems: an exemplification of its effects on the mechanobiology of heterogeneous living cells.

Comput Methods Biomech Biomed Engin

MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada.

Published: April 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Auxeticity (negative Poisson's ratio) is the unique mechanical property found in an extensive variety of materials, such as metals, graphene, composites, polymers, foams, fibers, ceramics, zeolites, silicates and biological tissues. The enhanced mechanical features of the auxetic materials have motivated scientists to design, engineer and manufacture man-made auxetic materials to fully leverage their capabilities in different fields of research applications, including aeronautics, medical, protective equipments, smart sensors, filter cleaning, and so on. Atomic force microscopy (AFM) indentation is one of the most widely used methods for characterizing the mechanical properties and response of the living cells. In this contribution, we highlight main consequences of auxeticity for biosystems and provide a representative example to quantify the effect of nucleus auxeticity on the force response of the embryonic stem cells. A parametric study has been conducted on a heterogeneous stem cell to evaluate the effect of nucleus diameter, nucleus elasticity, indenter's shape and location on the force-indentation curve. The developed model has also been validated with the recently reported experimental studies available in the literature. Our results suggest that the nucleus auxeticity plays a profound role in cell mechanics especially for large size nucleus. We also report the mechanical stresses induced within the hyperelastic cell model under different loading conditions that would be quite useful in decoding the interrelations between mechanical stimuli and cellular behavior of auxetic biosystems. Finally, current and potential areas of applications of our findings for regenerative therapies, tissue engineering, 3 D/4D bioprinting, and the development of meta-biomaterials are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2021.1965129DOI Listing

Publication Analysis

Top Keywords

auxeticity biosystems
8
living cells
8
auxetic materials
8
nucleus auxeticity
8
auxeticity
5
mechanical
5
nucleus
5
biosystems exemplification
4
exemplification effects
4
effects mechanobiology
4

Similar Publications