Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aim of this research was to evaluate the influence of forage species adapted to the tropical region of Ecuador on gas production, enteric methane, digestion, and ruminal fermentation. The tree forage evaluated were C. arborea, E. fusca, B. forficata, E. poeppigiana, C. argentea, G. sepium, C. tora, and F. macrophylla. Ruminal fluid of four adult sheep fistulated with permanent cannulas in the rumen was used in the in vitro gas production technique. The in vitro gas production parameters were lower (P < 0.05) in the C. arborea (A = 41.68 mL gas/g DM, c = 0.044%/h and Lag = 1.654 h) and the average gas production rate for B. forficata was 1.017 mL/h (P < 0.05). C. arborea presented higher (P = 0.0001) effective degradation and real DM digestibility (40.461 g/kg and 82.51 mg/g, respectively). With respect to VFA, the highest (P < 0.05) proportion of acetic, propionic, and butyric was observed in C. arborea, G. sepium, and E. poeppigiana (72.52, 23.09, and 7.44 mol/100 mol, respectively) and the lowest (P = 0.0001) ratio: acetic/propionic was observed in G. sepium (2.92 mol/100 mol). The content of NH-N (mg/L) showed no difference. The lowest (P = 0.0001) methane production was observed in C. arborea (1.23 mL CH/g DM). The use of forage species of tropical climate rich in secondary metabolites in ruminant diets has the capacity to reduce the gas production and enteric methane; however, this is at the expense of the reduction of the fermentation of organic matter in the rumen.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-15749-7DOI Listing

Publication Analysis

Top Keywords

gas production
20
methane production
8
forage species
8
production enteric
8
enteric methane
8
vitro gas
8
005 arborea
8
observed arborea
8
mol/100 mol
8
lowest 00001
8

Similar Publications

Microbial Enzymes for Biomass Conversion.

Annu Rev Microbiol

September 2025

3Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.

Plant biomass has emerged as a cornerstone of the global bioenergy landscape because of its abundance and cost-effectiveness. The cell wall of plant biomass is an intricate network of cellulose, hemicellulose, and lignin. The hydrolysis of cellulose and hemicellulose by holoenzymes converts these polymers into monosaccharides and paves the way for the production of bioethanol and other bio-based products.

View Article and Find Full Text PDF

Nontargeted Screening of Fingermark Residue Using Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry for Future Use in Forensic Applications.

J Am Soc Mass Spectrom

September 2025

Nontargeted Separations Laboratory, Chemistry Department, William & Mary, Integrated Science Center 1053, 540 Landrum Drive, Williamsburg, Virginia 23188, United States.

Fingerprints are routinely used as evidence in forensic investigations. Fingermarks, any mark left by a donor whether a complete print or not, include sweat and oil excreted by the donor. The chemical components of fingermarks are typically analyzed by gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Fruit and fruit-based products are a valuable source of essential nutrients, critical for food security, and drive economic productivity with minimal inputs. The significant rise in global demand for high-quality imported fruit and fruit-based products reflects a shift in consumer awareness and interest in the products origin and potential health-promoting bioactive compounds. Analytical techniques such as liquid chromatography, gas chromatography, inductively coupled plasma techniques, isotope-ratio mass spectrometry (IRMS), near infrared (NIR) spectroscopy, visible near infrared (VIS-NIR) spectroscopy, hyperspectral imaging (HSI), mid-infrared (MIR) spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, terahertz spectroscopy, dielectric spectroscopy, electronic nose (e-nose), and electronic tongue (e-tongue) coupled with supervised and unsupervised chemometrics can be employed for traceability, authentication, and bioactive profiling of fruit and fruit-based products.

View Article and Find Full Text PDF

The food system is under increased pressure because of the need for sustainability, greater food safety, and increasing need for protein sources. Grasshopper-based food products are becoming a new option. Products made from grasshoppers represent a sustainable and nutritious alternative to traditional livestock.

View Article and Find Full Text PDF

Three-dimensional optical path extended gourd-type photoacoustic cell for highly sensitive trace acetylene sensing.

Photoacoustics

October 2025

Hubei Key Laboratory of Intelligent Wireless Communications, Hubei Engineering Research Center of Intelligent IOT technology, College of Electronics and Information Engineering, South-Central Minzu University, Wuhan 430074, China.

A novel gourd-type photoacoustic cell (GTPAC) has been developed, featuring a highly reflective, polished gold film-coated inner wall that minimizes optical loss and maximizes light utilization efficiency. GTPAC integrates two coupled spherical chambers with a radius ratio 2:3, which is close to the golden ratio. Its unique Gaussian curvature distribution enables multi-directional, disordered light beam reflection without complex optical alignment.

View Article and Find Full Text PDF