Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Motor cortex stimulation via surgically implanted electrodes has been used as an off-label treatment for chronic neuropathic pain, but its efficacy has not been fully established. We aimed to objectively study the efficacy of motor cortex stimulation and characterize potential predictors of response. In this randomized, double-blind, sham-controlled, single centre trial, we recruited 18 patients with chronic neuropathic pain who did not adequately respond to conventional treatment and had a numerical pain rating scale (NRS) score ≥6. Patients were initially assigned to receive 3 months of active ('on') or sham ('off') stimulation in a double-blind cross-over phase. This was followed by a 3-month single-blind phase, and 6 months of open-label follow-up. A meaningful response in our trial was defined as a ≥30% or 2-point reduction in NRS scores during active stimulation. Using Bayesian statistics, we found a 41.4% probability of response towards on versus off motor cortex stimulation. The probability of improvement during active stimulation (double-blind, single-blind and open-label phases) compared to baseline was 47.2-68.5%. Thirty nine per cent of the patients were considered long-term responders, 71.4% of whom had facial pain, phantom limb pain or complex regional pain syndrome. In contrast, 72.7% of non-responders had either post-stroke pain or pain associated with brachial plexus avulsion. Thirty-nine per cent of patients had a substantial postoperative analgesic effect after electrode insertion in the absence of stimulation. Individuals with diagnoses associated with a good postoperative outcome or those who developed an insertional effect had a near 100% probability of response to motor cortex stimulation. In summary, we found that ∼40% of patients responded to motor cortex stimulation, particularly those who developed an insertional effect or had specific clinical conditions that seemed to predict an appropriate postoperative response.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab189DOI Listing

Publication Analysis

Top Keywords

motor cortex
24
cortex stimulation
24
chronic neuropathic
12
neuropathic pain
12
stimulation
10
pain
9
stimulation double-blind
8
active stimulation
8
probability response
8
cent patients
8

Similar Publications

Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.

View Article and Find Full Text PDF

This case study reports the first documented use of stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC) to treat refractory status epilepticus (RSE). A 33-year-old woman with drug-resistant epilepsy and recurrent RSE underwent SEEG to define her epileptogenic zone. A new RSE started shortly before and continued during the SEEG exploration, being unresponsive to multiple antiseizure medications, vagal nerve stimulation, and corticosteroid therapy.

View Article and Find Full Text PDF

Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.

View Article and Find Full Text PDF

Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.

View Article and Find Full Text PDF