EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels.

Sensors (Basel)

Department of Artificial Intelligence Convergence, Chonnam National University, 77 Yongbong-ro, Gwangju 500-757, Korea.

Published: July 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Besides facial or gesture-based emotion recognition, Electroencephalogram (EEG) data have been drawing attention thanks to their capability in countering the effect of deceptive external expressions of humans, like faces or speeches. Emotion recognition based on EEG signals heavily relies on the features and their delineation, which requires the selection of feature categories converted from the raw signals and types of expressions that could display the intrinsic properties of an individual signal or a group of them. Moreover, the correlation or interaction among channels and frequency bands also contain crucial information for emotional state prediction, and it is commonly disregarded in conventional approaches. Therefore, in our method, the correlation between 32 channels and frequency bands were put into use to enhance the emotion prediction performance. The extracted features chosen from the time domain were arranged into feature-homogeneous matrices, with their positions following the corresponding electrodes placed on the scalp. Based on this 3D representation of EEG signals, the model must have the ability to learn the local and global patterns that describe the short and long-range relations of EEG channels, along with the embedded features. To deal with this problem, we proposed the 2D CNN with different kernel-size of convolutional layers assembled into a convolution block, combining features that were distributed in small and large regions. Ten-fold cross validation was conducted on the DEAP dataset to prove the effectiveness of our approach. We achieved the average accuracies of 98.27% and 98.36% for arousal and valence binary classification, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348713PMC
http://dx.doi.org/10.3390/s21155092DOI Listing

Publication Analysis

Top Keywords

emotion recognition
12
eeg signals
8
channels frequency
8
frequency bands
8
eeg-based emotion
4
recognition convolutional
4
convolutional neural
4
neural network
4
network multi-scale
4
multi-scale kernels
4

Similar Publications

Machine learning techniques to classify emotions from electroencephalogram topographic maps: A systematic review.

Comput Biol Med

September 2025

Postgraduate Program in Computing, Center for Technological Development, Federal University of Pelotas, Pelotas, 96010-610, Rio Grande do Sul, Brazil.

In the task of image classification for emotion recognition, facial expression data is commonly used. However, electrical brain signals generated by neural activity provide data with greater integrity. We can capture these signals non-invasively using electroencephalogram (EEG) recording devices.

View Article and Find Full Text PDF

The susceptibility to emotional contagion has been psychometrically addressed by the self-reported Emotional Contagion Scale. With the present research, we validated a German adaptation of this scale and developed a mimicry brief version by selecting only the four items explicitly addressing the overt subprocess of mimicry. Across three studies (N1 = 195, N2 = 442, N3 = 180), involving various external measures of empathy, general personality domains, emotion recognition, and other constructs, the total German Emotional Contagion Scale demonstrated sound convergent and discriminant validity.

View Article and Find Full Text PDF

Objectives: Many patients with systemic sclerosis (SSc) experience impaired hand function, yet the precise nature and impact of this impairment remains unclear. In this study, we explored the determinants of hand function impairment in SSc from a patient perspective and its impact on daily life. Additionally, we identified unmet care needs related to hand function impairment.

View Article and Find Full Text PDF

Wearable sensors for animal health and wellness monitoring.

Prog Mol Biol Transl Sci

September 2025

Nanobiology and Nanozymology Research Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India. Electronic address:

Biosensors are rapidly emerging as a key tool in animal health management, therefore, gaining a significant recognition in the global market. Wearable sensors, integrated with advanced biosensing technologies, provide highly specialized devices for measuring both individual and multiple physiological parameters of animals, as well as monitoring their environment. These sensors are not only precise and sensitive but also reliable, user-friendly, and capable of accelerating the monitoring process.

View Article and Find Full Text PDF

Objective: To evaluate the impact of an educational intervention on nursing care for women with signs of postpartum depression for primary health care nurses.

Method: Quasi-experimental, before-and-after study carried out with 14 primary health care nurses from a municipality, who participated in an educational intervention on nursing care for women with signs of postpartum depression. Qualitative data analysis was carried out before and after the intervention, using Bardin's thematic content analysis.

View Article and Find Full Text PDF