Testing the efficacy of sea urchin exclusion methods for restoring kelp.

Mar Environ Res

National Centre for Coasts and Climate, University of Melbourne, VIC, 3010, Australia; Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, TAS, 7001, Australia. Electronic address:

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Kelps are ecosystem engineers, which collectively form forests that provide a variety of important ecosystem services for humans and other organisms. Kelp forests are threatened by multiple local and global stressors, one of the most notable is herbivory. Overabundant sea; urchins can consume kelp, leading to a phase shift from productive forests to unproductive; rocky barrens. Reducing sea urchin densities by directly removing them can reverse this; phase shift. However, maintaining low densities of sea urchins, is logistically and financially; challenging. Following a review of herbivore exclusion methods to date, we tested the efficacy of three different methods for excluding sea urchins from kelp in the laboratory: flexible fences; electricity; and copper anti-fouling paint. The results from the laboratory; experiment showed that flexible fencing was the most successful method for excluding sea urchins. To test the efficacy of this method in the field, sea urchins were removed from 1m patches in barrens and intact kelp beds, and the effectiveness of flexible fences of two different heights (30 cm and 60 cm) at excluding sea urchins were tested. The results from the field study demonstrated that flexible fences of both heights were effective at maintaining low sea urchin densities in barrens but not in intact kelp beds, relative to unmanipulated; rocky barrens. These findings suggest that flexible fencing could be an important tool in restoring kelp in barrens, however the costs of fencing are likely to place limits on the scale at which this management strategy can be implemented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2021.105439DOI Listing

Publication Analysis

Top Keywords

sea urchins
24
sea urchin
12
excluding sea
12
flexible fences
12
sea
9
exclusion methods
8
restoring kelp
8
phase shift
8
rocky barrens
8
urchin densities
8

Similar Publications

Since Hans Driesch's pioneering work in 1891, it has been known that animal embryos can develop into complete individuals even when divided. However, the developmental processes and molecular mechanisms enabling this self-organization remain poorly understood. In this study, we revisit Driesch's experiments by examining the development of isolated 2-cell stage blastomeres in the sea urchin, Hemicentrotus pulcherrimus.

View Article and Find Full Text PDF

The sunflower star, Pycnopodia helianthoides, was a top benthic predator throughout its former range from Alaska to northern Mexico, until its populations were devastated starting in 2013 by a disease known as seastar wasting. The subsequent absence of sunflower stars from northern California waters was coincident with a dramatic ecological phase shift from healthy bull kelp forests (Nereocystis luetkeana) to barrens formed by purple sea urchins (Strongylocentrotus purpuratus), a prey of sunflower stars. Modeling suggests that restoration and resilience of kelp forests can be enhanced by the return of sunflower stars.

View Article and Find Full Text PDF

Chronic wounds and skin ulcers pose significant challenges to healthcare systems globally, necessitating innovative approaches to accelerate healing processes. Biomaterial-based therapies have emerged as promising solutions for tissue regeneration. This study focuses on valorization of sea urchin waste toward the development and characterization of collagen-based scaffolds added with polyhydroxynaphthoquinone (PHNQ) antioxidants, successfully incorporated into biomaterials at optimal ratio, enhancing scaffold stability and integrity.

View Article and Find Full Text PDF

Ecotoxicological impacts of short-term fluoxetine exposure on the intertidal sea urchin (Heliocidaris crassispina): Effects on anti-predation, feeding/digestion, and reproduction.

Mar Environ Res

August 2025

National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, People's Republic of China. Electronic address:

Fluoxetine (FLX), a commonly prescribed antidepressant, has entered aquatic envi ronments due to its widespread use and the inefficiency of wastewater treatment plants in fully removing it. This has led to growing concerns within the scientific community about its potential adaptive effects on marine organisms, particularly in intertidal zones where research is still limited. To address these concerns, this study investigated the short-term adaptive effects of FLX at varying concentrations (0.

View Article and Find Full Text PDF

The sea urchin is a good model in ecotoxicology, but adults living along the Italian coasts have a limited reproductive period. In this species, natural or human-driven pressures may lead to limited gamete availability for ecotoxicological surveys. This study investigates the quality of early developmental stages of wild and cultured sea urchins to be used in ecotoxicology, avoiding field collection of mature specimens.

View Article and Find Full Text PDF