Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aluminum optics are widely used in modern optical systems because of their high specific stiffness and high reflectance. With the applied optical frequency band moving to visible, traditional processing technology cannot meet the processing precision. Ion beam sputtering (IBS) provides a highly deterministic technology for high-precision aluminum optics fabrication. However, the surface quality is deteriorated after IBS. The interaction between the bombard atoms and the surface morphology evolution mechanism are not clear, and systematic research is needed. Thus, in this paper, the IBS process for single crystal aluminum with different crystallographic orientations are studied by the molecular dynamics method. The ion beam sputter process is firstly demonstrated. Then, the variation of sputter yield of the three crystal faces is analyzed. The sputter yield difference of different crystal surfaces causes the appearance of the relief structure. Then, the gravel structure generates on the single crystal surfaces and dominates the morphology evolution. The state of the atom diffusion of the specific crystal surfaces will determine the form of the gravel structure. Furthermore, the form and distribution of subsurface damage and stress distribution of three different crystal surfaces are analyzed. Although there are great differences in defect distribution, no stress concentration was found in three workpieces, which verifies that the ion beam sputter is a stress-free machining method. The process of IBS and the mechanism of morphology evolution of aluminum are revealed. The regularity and mechanism will provide a guidance for the application of IBS in aluminum optics manufacture fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305627PMC
http://dx.doi.org/10.3390/mi12070848DOI Listing

Publication Analysis

Top Keywords

crystal surfaces
16
aluminum optics
12
ion beam
12
morphology evolution
12
beam sputtering
8
single crystal
8
beam sputter
8
sputter yield
8
three crystal
8
gravel structure
8

Similar Publications

Structural Elucidation and Covalent Modulation of the Autorepressed Orphan Nuclear Receptor NR2F6.

ACS Chem Biol

September 2025

Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Technische Universiteit Eindhoven, 5612 AZ Eindhoven, The Netherlands.

The orphan nuclear receptor NR2F6 (Nuclear Receptor subfamily 2 group F member 6) is an emerging therapeutic target for cancer immunotherapy. Upregulation of NR2F6 expression in tumor cells has been linked to proliferation and metastasis, while in immune cells NR2F6 inhibits antitumor T-cell responses. Small molecule modulation of NR2F6 activity might therefore be a novel strategy in cancer treatment, benefiting from this dual role of NR2F6.

View Article and Find Full Text PDF

Simultaneous removal of NO and propane by solid electrolyte cells with LaPrBaNiO bifunctional electrodes.

J Hazard Mater

September 2025

School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Environmental Chemistry and Low Carbon Technology, Zhengzhou 450001, China. Electronic address:

Solid electrolyte cell is a novel gas purification approach, which has unique superiority in simultaneous nitrogen oxides (NO) and volatile organic compounds (VOCs) removal. The development of effective electrode materials and the comprehensive understanding of reaction mechanisms are essential to advancing this technology. In this study, LaPrBaNiO (x = 0, 0.

View Article and Find Full Text PDF

New horizons in synthesis, functionalization, and deposition of advanced materials using multifunctional organic alkalizers.

Adv Colloid Interface Sci

September 2025

Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada. Electronic address:

This review describes new strategies in the use of multifunctional organic alkalizers (OA) for the fabrication of advanced functional materials. OA facilitate solubilization and delivery of poorly solubilized drugs through the formation of drug-OA complexes and supramolecular gels. OA are applied for the synthesis of materials for biomedical, energy storage, catalytic, photovoltaic, sensor, and electronic applications.

View Article and Find Full Text PDF

Tuning the Electrical Property and Electronic Band Structures of Organic Semiconductors via Surface Tension.

J Phys Chem Lett

September 2025

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.

View Article and Find Full Text PDF

A new family of nanostructured ternary intermetallic compounds - named the ZIP phases - is introduced in this work. The ZIP phases exhibit dualistic atomic ordering, i.e.

View Article and Find Full Text PDF