98%
921
2 minutes
20
Fetal exposure to certain phthalate esters can disrupt testis development in rodents and lead to male reproductive disorders, but with a causal link less certain in humans. Di(2-ethylhexyl) phthalate (DEHP) is one of the most common phthalates found in the environment and in rodents it is known to induce serious testis toxicity, as well as male reproductive disorders including cryptorchidism, hypospadias, impaired spermatogenesis and reduced fertility. In this study, we show that perinatal DEHP exposure disrupts gap junction localization in fetal and postnatal rat testis and correlate these findings to morphological changes. The protein Connexin 43 (CX43), normally expressed strongly in testicular gap junctions, was markedly downregulated in Leydig cells of DEHP-exposed fetal testes. In the postnatal testes, CX43 expression was recovered in the DEHP-exposed animals, even though Leydig cell clusters and malformed cords with intratubular Leydig cells were still present.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320622 | PMC |
http://dx.doi.org/10.1016/j.crtox.2020.02.002 | DOI Listing |
J Invest Dermatol
September 2025
Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA. Electronic address:
Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species.
View Article and Find Full Text PDFCurr Biol
August 2025
Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912, USA.
Across various types of learning and memory, when a new training session follows a previous one after a certain temporal interval, the previously acquired learning can be disrupted-an effect known as retrograde interference (RI) or catastrophic forgetting. This disruption is thought to result from disrupting interactions between the learning of the first-trained task and the learning of the second-trained task while the former has not yet stabilized. Such destructive interactions have been considered characteristic not only of RI but also of related phenomena.
View Article and Find Full Text PDFNeurobiol Dis
September 2025
Mudanjiang Collaborative Innovation Center for development and application of Northern Medicine Resources, Mudanjiang, PR China; Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang, PR China. Electronic address:
Spinal cord injury (SCI) causes irreversible motor deficits due to disrupted lumbar circuitry. However, transcriptional mechanisms in distal lumbar circuits are poorly understood. We identify POU6F1 as a critical transcriptional regulator in spinal lumbar segment (SLS, L3-L5) motor circuit regeneration.
View Article and Find Full Text PDFJ Cell Commun Signal
September 2025
Gap junctions are essential channels of communication between cells including neurons in the central nervous system. These channels coordinate cell metabolic and electrical functions including such crucial ones for maintaining homeostasis as cell proliferation, differentiation, survival, and apoptosis. They create narrow passageways that allow rapid exchange of small molecules, ions, and secondary messengers between neighboring cells including the retina and optic nerve.
View Article and Find Full Text PDFJ Photochem Photobiol B
September 2025
College of Science, Northeast Forestry University, Harbin 150040, China. Electronic address:
This study employs a suite of quantum chemical methods to systematically investigate the photoisomerization mechanism and antioxidant activity of resveratrol (Res) and two key derivatives, Azo-Resveratrol (AzoRes) and Dihydro-Resveratrol (dhRes), thereby elucidating the impact of molecular scaffold modification on their structure-activity relationships. Employing density functional theory (DFT), time-dependent DFT (TD-DFT), spin-flip TD-DFT and multistate complete active space second-order perturbation theory (MS-CASPT2), we investigated the geometric configurations, absorption spectra, photoisomerization pathways, and key antioxidant parameters for all three molecules. The results reveal that the substitution of the CC bond with an NN linkage (AzoRes) induces a bathochromic shift in the absorption spectrum, introduces a low-energy n → π* transition, and facilitates a barrierless photoisomerization pathway.
View Article and Find Full Text PDF