Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This work demonstrates the fabrication of tellurium-nanowires (Te-NWs)/paper based device encapsulated using laser assisted mircopyramid patterned polydimethylsiloxane (PDMS) films. Although there are multiple reports published on 1D Te, most of them are limited to establishing its properties and studying its behavior as a sensor and research on the utilization of Te-NWs for physical sensors remain unexplored. Further, reports on p-type photodetectors also remain scarce. The fabricated Te-NWs/paper with micropyramid structured PDMS films encapsulation was used as a strain sensor, and it exhibited considerable improvement (∼60%) in sensitivity compared to smooth PDMS films. The gauge factor of the developed strain sensor was found to be ∼15.3. In addition, fabricated Te-NWs/paper device with contacts was used as a photodetector and it showed photoresponsivity of ∼22.5 mA Wand ∼14.5 mA Win visible and NIR regions, respectively. Furthermore, the device exhibited long-term mechanical stability under harsh deformations. Fabricated 1D Te-NWs/paper device was utilized as a strain sensor to monitor the angular movements in the human body and successfully monitored various human motions, including wrist bending, finger knuckle, elbow joint, and knee joint. The successful demonstration of Te-NWs based physical sensors and utilization in broadband photodetectors opens avenues of research for tellurium based flexible and wearable devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac19d8 | DOI Listing |