98%
921
2 minutes
20
Dual-ion batteries (DIBs) offer a great alternative to state-of-the-art lithium-ion batteries, based on their high promises due to the absence of transition metals and the use of low-cost materials, which could make them economically favorable targeting stationary energy storage applications. In addition, they are not limited by certain metal cations, and DIBs with a broad variety of utilized ions could be demonstrated over the last years. Herein, a systematic study of different electrolyte approaches for Mg-ion-based DIBs was conducted. A side-by-side comparison of Li- and Mg-ion-based electrolytes using activated carbon as negative electrode revealed the opportunities but also limitations of Mg-ion-based DIBs. Ethylene sulfite was successfully introduced as electrolyte additive and increased the specific discharge capacity significantly up to 93±2 mAh g with coulombic efficiencies over 99 % and an excellent capacity retention of 88 % after 400 cycles. In addition, and for the first time, highly concentrated carbonate-based electrolytes were employed for Mg-ion-based DIBs, showing adequate discharge capacities and high coulombic efficiencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596887 | PMC |
http://dx.doi.org/10.1002/cssc.202101227 | DOI Listing |
ChemSusChem
October 2021
MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstraße 46, 48149, Münster, Germany.
Dual-ion batteries (DIBs) offer a great alternative to state-of-the-art lithium-ion batteries, based on their high promises due to the absence of transition metals and the use of low-cost materials, which could make them economically favorable targeting stationary energy storage applications. In addition, they are not limited by certain metal cations, and DIBs with a broad variety of utilized ions could be demonstrated over the last years. Herein, a systematic study of different electrolyte approaches for Mg-ion-based DIBs was conducted.
View Article and Find Full Text PDF