Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thorium as a potential nuclear fuel for the next-generation thorium-based molten salt reactors holds significant environmental and economic promise over the current uranium-based nuclear reactors. However, because thorium (Th) usually coexists with other rare earth elements, alkali or alkaline earth metals in minerals, or highly acidic radioactive waste, seeking acid-resistant sorbents with excellent selectivity, high capacity, and fast removal rate for Th is still a challenging task. In this work, we investigated a robust layered metal sulfide (KInSnS, KMS-5) for Th removal from strong acidic solutions. We report that KMS-5 could capture Th from a 0.1 M HNO solution with extremely high efficiency (∼99.9%), fast sorption kinetics (equilibrium time < 10 min), and large distribution coefficient (up to 1.5 × 10 mL/g). Furthermore, KMS-5 exhibited excellent sorption selectivity towards Th in the presence of large amounts of competitive metal ions like Eu, Na, and Ca. This extraordinary capture property for Th is attributed to the facile ion exchange of Th with K in the interlayers and subsequent formation of a stable coordination complex via Th-S bonds. These results indicate that KMS-5 is a promising functional sorbent for the effective capture of Th from highly acidic solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c12004DOI Listing

Publication Analysis

Top Keywords

highly acidic
12
layered metal
8
metal sulfide
8
acidic solutions
8
selective capture
4
capture mechanism
4
mechanism radioactive
4
radioactive thorium
4
thorium highly
4
acidic
4

Similar Publications

Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs), which are susceptible to DNA damage, depend on a robust and highly efficient DNA damage response (DDR) mechanism for their survival. However, the implications of physical force-mediated DNA damage on ESC fate remain unclear. We show that stiffness-dependent spreading of mouse ESCs (mESCs) induces DNA damage through nuclear compression, with DNA damage causing differentiation through Lamin A/C.

View Article and Find Full Text PDF

Accurate detection of tandem repeats exposes ubiquitous reuse of biological sequences.

Nucleic Acids Res

September 2025

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, United States.

Tandem repetition is one of the major processes underlying genome evolution and phenotypic diversification. While newly formed tandem repeats are often easy to identify, it is more challenging to detect repeat copies as they diverge over evolutionary timescales. Existing programs for finding tandem repeats return markedly different results, and it is unclear which predictions are more correct and how much room remains for improvement.

View Article and Find Full Text PDF

Nucleosome repositioning is essential for establishing nucleosome-depleted regions to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogeneously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome-positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.

View Article and Find Full Text PDF

Rational design of tunable pH switches through shadow-strand hybridization-actuated displacement engineering.

Nucleic Acids Res

September 2025

Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.

Local pH variations play a pivotal role in numerous critical biological processes. However, achieving the tunability and selectivity of pH detection remains a challenge. Here, we present a DNA-based strategy that enables programmable and selective pH responses, which is termed shadow-strand hybridization-actuated displacement engineering (SHADE).

View Article and Find Full Text PDF