A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Macrophage depletion increases target specificity of bone-targeted nanoparticles. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite efforts to achieve tissue selectivity, the majority of systemically administered drug delivery systems (DDSs) are cleared by the mononuclear phagocyte system (MPS) before reaching target tissues regardless of disease or injury pathology. Previously, we showed that while tartrate-resistant acid phosphatase (TRAP) binding peptide (TBP)-targeted polymeric nanoparticles (TBP-NP) delivering a bone regenerative Wnt agonist improved NP fracture accumulation and expedited healing compared with controls, there was also significant MPS accumulation. Here we show that TBP-NPs are taken up by liver, spleen, lung, and bone marrow macrophages (Mϕ), with 76 ± 4%, 49 ± 11%, 27 ± 9%, and 92 ± 5% of tissue-specific Mϕ positive for NP, respectively. Clodronate liposomes (CLO) significantly depleted liver and spleen Mϕ, resulting in 1.8-fold and 3-fold lower liver and spleen and 1.3-fold and 1.6-fold greater fracture and naïve femur accumulation of TBP-NP. Interestingly, depletion and saturation of MPS using 10-fold greater TBP-NP doses also resulted in significantly higher TBP-NP accumulation at lungs and kidneys, potentially through compensatory clearance mechanisms. The higher NP dose resulted in greater TBP-NP accumulation at naïve bone tissue; however, other MPS tissues (i.e., heart and lungs) exhibited greater TBP-NP accumulation, suggesting uptake by other cell types. Most importantly, neither Mϕ depletion nor saturation strategies improved fracture site selectivity of TBP-NPs, possibly due to a reduction of Mϕ-derived osteoclasts, which deposit the TRAP epitope. Altogether, these data support that MPS-mediated clearance is a key obstacle in robust and selective fracture accumulation for systemically administered bone-targeted DDS and motivates the development of more sophisticated approaches to further improve fracture selectivity of DDS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595540PMC
http://dx.doi.org/10.1002/jbm.a.37279DOI Listing

Publication Analysis

Top Keywords

liver spleen
12
greater tbp-np
12
tbp-np accumulation
12
systemically administered
8
improved fracture
8
fracture accumulation
8
depletion saturation
8
accumulation
7
tbp-np
6
fracture
5

Similar Publications