Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Orienting attention in the space around us is a fundamental prerequisite for willed actions. On Earth, at 1 g, orienting attention requires the integration of vestibular signals and vision, although the specific vestibular contribution to voluntary and automatic components of visuospatial attention remains largely unknown. Here, we show that unweighting of the otolith organ in zero gravity during parabolic flight, selectively enhances stimulus-driven capture of automatic visuospatial attention, while weakening voluntary maintenance of covert attention. These findings, besides advancing our comprehension of the basic influence of the vestibular function on voluntary and automatic components of visuospatial attention, may have operational implications for the identification of effective countermeasures to be applied in forthcoming human deep space exploration and habitation, and on Earth, for patients' rehabilitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8316350 | PMC |
http://dx.doi.org/10.1038/s41526-021-00159-3 | DOI Listing |