98%
921
2 minutes
20
Study Design: Cadaveric biomechanics study.
Objective: Subchondral bone mineral density (sBMD) reflects the long-term mineralization and distribution of stress on joints. The use of 3-dimensional (3-D) methods to evaluate sBMD, including computed tomography osteoabsorptiometry (CT-OAM), enables the assessment of density distribution with emphasis on subchondral bone. This study sought to measure the sBMD of cervical endplates using CT-OAM and correlate it to mechanical implant subsidence in a cadaveric model.
Methods: Fourteen fresh human cadaveric cervical spines were subjected to dynamic testing after single level discectomy and instrumentation using a PEEK interbody spacer. Specimens were imaged with CT 3 times: 1st) whole intact cervical spine, 2nd) after implantation, and 3 after testing. These images were used to assess sBMD distributions using CT-OAM directly underneath the spacer. Subsidence was defined as the displacement of the device into the endplates.
Results: The observed "failure mode" was consistently recorded as subsidence, with a mean of 0.45 ± 0.36 mm and 0.40 ± 0.18 mm for the C4-5 and C6-7 levels, respectively. There were no differences by level. The experimental cyclic test showed that denser endplates experienced less deformation under the same load.
Conclusions: This study achieved its stated aim of validating the use of CT-OAM as a method to analyze the sBMD of the cervical endplates. Studies such as this are providing new information on available technology such as CT-OAM, providing new tools for clinicians treating spinal conditions in need of augmentation and stabilization via interbody devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416603 | PMC |
http://dx.doi.org/10.1177/21925682211034845 | DOI Listing |
Int J Biol Macromol
September 2025
Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China; Shanghai Key Laboratory of Intelligen
Osteochondral defects caused by trauma, obesity, tumors, and degenerative osteoarthropathies severely impair patients' quality of life. Multilayer tissue engineering scaffolds offer promising strategies for osteochondral repair by enhancing structural biomimicry. In this study, a triple-layer GelMA-alginate-based osteochondral scaffold (TCOS) was fabricated using an enhanced multi-axis, multi-process, multi-material 3D bioprinting system (MAPM-BPS).
View Article and Find Full Text PDFPhytomedicine
August 2025
Zhejiang Provincial Chinese Medicine Hospital (First affiliated hospital of Zhejiang Chinese Medical University), Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, 310053, China; Department of Orthopedics, Affiliated Hospital of Jiangxi University of Chinese Medicine, Jiangxi Un
Background: Osteoporotic osteoarthritis (OPOA), a distinct subtype of osteoarthritis (OA), has imposed a significant health and economic burden worldwide. However, mechanistic studies and therapeutic strategies for this disease remain in the exploratory stage.
Purpose: This study aimed to investigate the specific molecular mechanisms by which osteoporosis (OP) exacerbates OA progression through accelerated subchondral bone (SB) sclerosis and the potential of Jiawei Yanghe Decoction (JWYHD) in treating OPOA.
J Surg Case Rep
September 2025
Department of Orthopaedics and Sports Medicine, University at Buffalo, 462 Grider Street, Buffalo, NY 14215, United States.
An 8-year-old girl fell onto her outstretched arm, sustaining proximal ulna and radial neck fractures. After closed reduction and casting in the emergency department, radiographs showed improved alignment but limited bony detail. A CT scan performed 3 days later demonstrated 18° apex-medial angulation of the radial neck, slight radiocapitellar subluxation, and subtle calcification near the trochlear notch, concerning intra-articular injury.
View Article and Find Full Text PDFJ Orthop Translat
November 2025
Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University,
Unlabelled: Osteoarthritis (OA) is characterized by the inability of stable and complex joint structures to function as they did, accompanied by inflammation, tissue changes, chronic pain, and neuropathic inflammation. In the past, the primary focus on the causes of joint dysfunction has been on mechanical stress leading to cartilage wear. Further researches emphasize the aging of cartilage and subchondral bone triggered cartilage lesion and osteophyte formation.
View Article and Find Full Text PDFConnect Tissue Res
September 2025
Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
Osteoarthritis (OA) is a multifactorial, mechano-inflammatory joint disorder characterized by cartilage degradation, synovial inflammation, and subchondral bone remodeling. Despite its high prevalence and significant impact on quality of life, no disease-modifying treatments have been approved. In many other disease areas, advanced omics technologies are impacting the development of advanced therapies.
View Article and Find Full Text PDF