A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Accelerating Global Tractography Using Parallel Markov Chain Monte Carlo. | LitMetric

Accelerating Global Tractography Using Parallel Markov Chain Monte Carlo.

Comput Diffus MRI

Department of Radiology and BRIC, UNC Chapel Hill, Chapel Hill, NC, USA.

Published: April 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Global tractography estimates brain connectivity by determining the optimal configuration of signal-generating fiber segments that best describes the measured diffusion-weighted data, promising better stability than local greedy methods with respect to imaging noise. However, global tractography is computationally very demanding and requires computation times that are often prohibitive for clinical applications. We present here a reformulation of the global tractography algorithm for fast parallel implementation amendable to acceleration using multi-core CPUs and general-purpose GPUs. Our method is motivated by the key observation that each fiber segment is affected by a limited spatial neighborhood. That is, a fiber segment is influenced only by the fiber segments that are (or can potentially be) connected to its both ends and also by the diffusion-weighted signal in its proximity. This observation makes it possible to parallelize the Markov chain Monte Carlo (MCMC) algorithm used in the global tractography algorithm so that updating of independent fiber segments can be done concurrently. The experiments show that the proposed algorithm can significantly speed up global tractography, while at the same time maintain or improve tractography performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299955PMC
http://dx.doi.org/10.1007/978-3-319-28588-7_11DOI Listing

Publication Analysis

Top Keywords

global tractography
24
fiber segments
12
markov chain
8
chain monte
8
monte carlo
8
tractography algorithm
8
fiber segment
8
tractography
7
global
5
fiber
5

Similar Publications