Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is an opportunistic pathogen with a high mortality rate due to multi-drug-resistant strains. The synthesis and uptake of the iron-chelating siderophores acinetobactin (Acb) and preacinetobactin (pre-Acb) have been shown to be essential for virulence. Here, we report the kinetic and structural characterization of BauF, a flavin-dependent siderophore-interacting protein (SIP) required for the reduction of Fe(III) bound to Acb/pre-Acb and release of Fe(II). Stopped-flow spectrophotometric studies of the reductive half-reaction show that BauF forms a stable neutral flavin semiquinone intermediate. Reduction with NAD(P)H is very slow ( , 0.001 s) and commensurate with the rate of reduction by photobleaching, suggesting that NAD(P)H are not the physiological partners of BauF. The reduced BauF was oxidized by Acb-Fe ( , 0.02 s) and oxazole pre-Acb-Fe (ox-pre-Acb-Fe) ( , 0.08 s), a rigid analogue of pre-Acb, at a rate 3-11 times faster than that with molecular oxygen alone. The structure of FAD-bound BauF was solved at 2.85 Å and was found to share a similarity to SIPs. The biochemical and structural data presented here validate the role of BauF in iron assimilation and provide information important for drug design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296543PMC
http://dx.doi.org/10.1021/acsomega.1c03047DOI Listing

Publication Analysis

Top Keywords

flavin-dependent siderophore-interacting
8
siderophore-interacting protein
8
bauf
6
structural biochemical
4
biochemical characterization
4
characterization flavin-dependent
4
protein opportunistic
4
opportunistic pathogen
4
pathogen high
4
high mortality
4

Similar Publications

is an opportunistic pathogen with a high mortality rate due to multi-drug-resistant strains. The synthesis and uptake of the iron-chelating siderophores acinetobactin (Acb) and preacinetobactin (pre-Acb) have been shown to be essential for virulence. Here, we report the kinetic and structural characterization of BauF, a flavin-dependent siderophore-interacting protein (SIP) required for the reduction of Fe(III) bound to Acb/pre-Acb and release of Fe(II).

View Article and Find Full Text PDF