Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This work aims to evaluate the effects of feldspar substitution by basalt on porcelain tile composition with respect to its porosity, flexural strength, and pyroplastic deformation. Three ceramic formulations with different amounts of feldspar substituted with basalt, 50% (C1), 75% (C2), and 100% (C3), were evaluated at three different temperatures, 1200, 1220, and 1240 °C. Specifically, the effect of replacing feldspar with basalt on the pyroplastic deformation of ceramic bodies was analysed using optical fleximetry. The porosity of C1 at 1200 °C was 19.3 ± 2.9%, while that of composition C3 was 22.2 ± 0.7% at 1240 °C. The flexural strength was strongly influenced by the temperature. For C1 at 1200 and 1240 °C, flexural strengths of 11.1 ± 0.6 and 22.2 ± 1.9 MPa, respectively, were obtained. Regarding fleximetry, thermal deformation decreased with an increase in the amount of feldspar substituted with basalt. It was observed that C2 and C3 deformed less at high temperatures than the other combinations of compositions and temperature, probably owing to the lower amount of residual glass phase present during cooling. Compositions with higher substitution amounts of basalt (i.e., C2 and C3) exhibited more stable thermal behaviour than C0.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305324 | PMC |
http://dx.doi.org/10.3390/ma14143990 | DOI Listing |