A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

On the Impact of the Data Acquisition Protocol on ECG Biometric Identification. | LitMetric

On the Impact of the Data Acquisition Protocol on ECG Biometric Identification.

Sensors (Basel)

Department of Electronics Telecommunications and Informatics, University of Aveiro, 3810-193 Aveiro, Portugal.

Published: July 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrocardiographic (ECG) signals have been used for clinical purposes for a long time. Notwithstanding, they may also be used as the input for a biometric identification system. Several studies, as well as some prototypes, are already based on this principle. One of the methods already used for biometric identification relies on a measure of similarity based on the Kolmogorov Complexity, called the Normalized Relative Compression (NRC)-this approach evaluates the similarity between two ECG segments without the need to delineate the signal wave. This methodology is the basis of the present work. We have collected a dataset of ECG signals from twenty participants on two different sessions, making use of three different kits simultaneously-one of them using dry electrodes, placed on their fingers; the other two using wet sensors placed on their wrists and chests. The aim of this work was to study the influence of the ECG protocol collection, regarding the biometric identification system's performance. Several variables in the data acquisition are not controllable, so some of them will be inspected to understand their influence in the system. Movement, data collection point, time interval between train and test datasets and ECG segment duration are examples of variables that may affect the system, and they are studied in this paper. Through this study, it was concluded that this biometric identification system needs at least 10 s of data to guarantee that the system learns the essential information. It was also observed that "off-the-person" data acquisition led to a better performance over time, when compared to "on-the-person" places.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309530PMC
http://dx.doi.org/10.3390/s21144645DOI Listing

Publication Analysis

Top Keywords

biometric identification
20
data acquisition
12
ecg signals
8
identification system
8
ecg
6
biometric
5
identification
5
system
5
impact data
4
acquisition protocol
4

Similar Publications