98%
921
2 minutes
20
Pyroptosis is an inflammatory form of programmed cell death that is mediated by pore-forming proteins such as the gasdermin family (GSDMs), including GSDMA-E. Upon cleavage by activated caspases or granzyme proteases, the N-terminal of GSDMs oligomerizes in membranes to form pores, resulting in pyroptosis. Though all the gasdermin proteins have been studied in cancer, the role of pyroptosis in cancer remains mysterious, with conflicting findings. Numerous studies have shown that various stimuli, such as pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and chemotherapeutic drugs, could trigger pyroptosis when the cells express GSDMs. However, it is not clear whether pyroptosis in cancer induced by chemotherapeutic drugs or CAR T cell therapy is beneficial or harmful for anti-tumor immunity. This review discusses the discovery of pyroptosis as well as its role in inflammatory diseases and cancer, with an emphasis on tumor immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304688 | PMC |
http://dx.doi.org/10.3390/cancers13143620 | DOI Listing |
Biomater Sci
September 2025
School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
Cancer immunotherapy has transformed oncological treatment paradigms, yet tumor resistance and immune evasion continue to limit therapeutic efficacy. Mitochondria-targeting organic sensitizers (MTOSs) represent an emerging class of therapeutic agents that exploit mitochondrial dysfunction as a convergent node for tumor elimination and immune activation. As central regulators of cellular metabolism, apoptotic signaling, and immune cell function, mitochondria serve as critical determinants of tumor progression and the immunological landscape within the tumor microenvironment (TME).
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Department of Emergency, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Key Laboratory of Emergency Medicine in Guangxi Universities, Nanning 530021, Guangxi Zhuang Autonomous Region, China. Electronic address:
Acute lung injury significantly contributes to mortality in bacterial sepsis due to lung endothelial barrier destruction, leading to protein-rich lung edema, an influx of proinflammatory leukocytes, and persistent hypoxemia. CTRP3, an adipokine, reduces endothelial adhesion molecules Vcam-1 and Icam-1 and inhibits LPS-induced monocytic adhesion, highlighting its anti-inflammatory effects. This study investigates CTRP3's protective role in sepsis-induced acute lung injury, revealing reduced CTRP3 expression during sepsis, which worsens endothelial dysfunction.
View Article and Find Full Text PDFApoptosis
September 2025
Department of Clinical Nutrition, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, 430022, Hubei, China.
Acute lung injury (ALI) is a complex, high-mortality pulmonary disease triggered by multiple etiological factors, potentially progressing to acute respiratory distress syndrome (ARDS). During the development of ALI/ARDS, a key pathological feature involves the disruption of the intact alveolar-capillary barrier, which is formed by alveolar epithelium, pulmonary interstitium, and microvascular endothelium. Under physiological conditions, cell death removes excess or dysfunctional cells, defends against pathogenic microorganisms, and thus plays a protective role while maintaining homeostasis.
View Article and Find Full Text PDFMedComm (2020)
September 2025
Cancer Research Center School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine Shanghai China.
Cancer remains the most lethal disease globally, despite the significant progress made in early screening, surgery, and therapeutic development in recent decades. Programmed cell death (PCD) is a genetically regulated process essential for eliminating aberrant cells, yet its dysregulation drives tumorigenesis and therapy resistance. In this review, we present a complete discovery timeline of them and comprehensively synthesize the roles and mechanisms of major PCD forms, such as apoptosis, necroptosis, autophagy, pyroptosis, ferroptosis, and cuproptosis, across diverse cancer types.
View Article and Find Full Text PDFJ Fluoresc
September 2025
Department of Pharmacology and Toxicology, Wright State University, Fairborn, OH, 45435, USA.
Non-small cell lung cancer (NSCLC) remains one of the most lethal malignancies worldwide, highlighting the urgent need for the development of novel multifunctional therapeutic strategies. In this study, a bioinspired nanocomposite drug delivery system was designed and constructed by covalently modifying propylene glycol alginate (PGA) with a microbial-derived coumarin compound (Compound 1) and a fluorinated small molecule (Compound 2), followed by assembly with the silane-based crosslinker ATPMS. The system was subsequently loaded with Dendrobium extract to produce the final nanocomposite material, 2-PGA-1-ATPMS@Dendrobium.
View Article and Find Full Text PDF