A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CNN-LRP: Understanding Convolutional Neural Networks Performance for Target Recognition in SAR Images. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Target recognition is one of the most challenging tasks in synthetic aperture radar (SAR) image processing since it is highly affected by a series of pre-processing techniques which usually require sophisticated manipulation for different data and consume huge calculation resources. To alleviate this limitation, numerous deep-learning based target recognition methods are proposed, particularly combined with convolutional neural network (CNN) due to its strong capability of data abstraction and end-to-end structure. In this case, although complex pre-processing can be avoided, the inner mechanism of CNN is still unclear. Such a "black box" only tells a result but not what CNN learned from the input data, thus it is difficult for researchers to further analyze the causes of errors. Layer-wise relevance propagation (LRP) is a prevalent pixel-level rearrangement algorithm to visualize neural networks' inner mechanism. LRP is usually applied in sparse auto-encoder with only fully-connected layers rather than CNN, but such network structure usually obtains much lower recognition accuracy than CNN. In this paper, we propose a novel LRP algorithm particularly designed for understanding CNN's performance on SAR image target recognition. We provide a concise form of the correlation between output of a layer and weights of the next layer in CNNs. The proposed method can provide positive and negative contributions in input SAR images for CNN's classification, viewed as a clear visual understanding of CNN's recognition mechanism. Numerous experimental results demonstrate the proposed method outperforms common LRP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272214PMC
http://dx.doi.org/10.3390/s21134536DOI Listing

Publication Analysis

Top Keywords

target recognition
16
convolutional neural
8
sar images
8
sar image
8
inner mechanism
8
understanding cnn's
8
proposed method
8
recognition
6
cnn
5
cnn-lrp understanding
4

Similar Publications