98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11547-021-01397-x | DOI Listing |
Eur Radiol Exp
September 2025
Department of Radio-diagnosis, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt.
Background: Bone marrow (BM) lesion differentiation remains challenging, and quantitative magnetic resonance imaging (MRI) may enhance accuracy over conventional methods. We evaluated the diagnostic value and inter-reader reliability of Dixon-based signal drop (%drop) and fat fraction percentage (%fat) as adjuncts to existing protocols.
Materials And Methods: In this prospective two-center study, 172 patients with BM signal abnormalities underwent standardized 1.
Pediatr Radiol
September 2025
Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, United States.
Magnetic resonance imaging (MRI) has become an essential tool in the evaluation of pediatric liver disease. However, the unique physiological, anatomical, and behavioral characteristics of pediatric patients present distinct challenges that necessitate tailored imaging strategies. These guidelines, developed by members of the Society for Pediatric Radiology (SPR) Magnetic Resonance and Abdominal Imaging Committees, provide comprehensive recommendations for performing high-quality liver MRI in children.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2025
Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Background: Carotid artery stenosis is a major cause of stroke. Non-contrast MR angiography (MRA) using time-spatial labeling inversion pulse (Time-SLIP) may offer potential advantages over 3D time-of-flight (TOF)-MRA for simultaneous visualization of carotid, vertebral, and subclavian arteries, but remains uninvestigated.
Purpose: To determine optimal black blood inversion time (TI) for visualizing the carotid and subclavian arteries using three-dimensional (3D) fast field echo (FFE) Time-SLIP MRA, and to compare its image quality with 3D TOF-MRA.
J Appl Clin Med Phys
September 2025
Clinical Imaging Physics Group, Duke University Health System, Durham, North Carolina, USA.
Introduction: Medical physicists play a critical role in ensuring image quality and patient safety, but their routine evaluations are limited in scope and frequency compared to the breadth of clinical imaging practices. An electronic radiologist feedback system can augment medical physics oversight for quality improvement. This work presents a novel quality feedback system integrated into the Epic electronic medical record (EMR) at a university hospital system, designed to facilitate feedback from radiologists to medical physicists and technologist leaders.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
September 2025
From the Department of Diagnostic Radiology (E.W., A.D., C.J.M., M.C., M.K.G.) and Department of Pathology (L.Y.B.), MD Anderson Cancer Center, Houston, TX, USA; Department of Radiology and Biomedical Imaging (L.T., J.M.J), Yale University, New Haven, CT, USA.
Background And Purpose: Brain imaging with MRI or CT is standard in screening for intracranial disease among ambulatory cancer patients. Although MRI offers greater sensitivity, CT is frequently employed due to its accessibility, affordability, and faster acquisition time. However, the necessity of routinely performing a non-contrast CT with the contrast-enhanced study is unknown.
View Article and Find Full Text PDF