A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Designing an intelligent monitoring system for corn seeding by machine vision and Genetic Algorithm-optimized Back Propagation algorithm under precision positioning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To realize the regulation of the position of corn seed planting in precision farming, an intelligent monitoring system is designed for corn seeding based on machine vision and the Genetic Algorithm-optimized Back Propagation (GABP) algorithm.

Methods: Based on the research on precision positioning seeding technology, comprehensive application of sensors, Proportional Integral Derivative (PID) controllers, and other technologies, combined with modern optimization algorithms, the online dynamic calibration controls of line spacing and plant spacing are implemented. Based on the machine vision and GABP algorithm, a test platform for the seeding effect detection system is designed to provide a reference for further precision seeding operations. GA can obtain better initial network weights and thresholds and find the optimal individual through selection, crossover, and mutation operations; that is, the optimal initial weight of the Back Propagation (BP) neural network. Field experiments verify the seeding performance of the precision corn planter and the accuracy of the seeding monitoring system.

Results: 1. The deviation between the average value of the six precision positioning seeding experiments of corn under the random disturbance signal and the ideal value of the distance is less than or equal to 0.5 cm; the deviation between the average value of the six precision positioning seeding experiments of corn under the sine wave disturbance signal (1 Hz) is less than or equal to 0.4 cm; the qualified rate of grain distance reaches 100%. 2. The precision control index, replay index, and missed index of the designed corn precision seeding intelligent control system have all reached the national standard. During the operation of the seeder, an alarm of the seeder leaking occurred, and the buzzer sounded and the screen displayed 100 times each; therefore, the reliability of the alarm system is 100%.

Conclusion: The intelligent corn seeder designed based on precision positioning seeding technology can reduce the seeding rate of the seeder and ensure the stability of the seed spacing effectively. Based on the machine vision and GABP algorithm, the seeding effect detection system can provide a reference for the further realization of precision seeding operations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282075PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254544PLOS

Publication Analysis

Top Keywords

precision positioning
20
machine vision
16
positioning seeding
16
seeding
14
based machine
12
precision seeding
12
precision
11
intelligent monitoring
8
monitoring system
8
corn
8

Similar Publications