Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The coronavirus disease 2019 (COVID-19) pandemic has disrupted breast cancer control through short-term declines in screening and delays in diagnosis and treatments. We projected the impact of COVID-19 on future breast cancer mortality between 2020 and 2030.

Methods: Three established Cancer Intervention and Surveillance Modeling Network breast cancer models modeled reductions in mammography screening use, delays in symptomatic cancer diagnosis, and reduced use of chemotherapy for women with early-stage disease for the first 6 months of the pandemic with return to prepandemic patterns after that time. Sensitivity analyses were performed to determine the effect of key model parameters, including the duration of the pandemic impact.

Results: By 2030, the models project 950 (model range = 860-1297) cumulative excess breast cancer deaths related to reduced screening, 1314 (model range = 266-1325) associated with delayed diagnosis of symptomatic cases, and 151 (model range = 146-207) associated with reduced chemotherapy use in women with hormone positive, early-stage cancer. Jointly, 2487 (model range = 1713-2575) excess breast cancer deaths were estimated, representing a 0.52% (model range = 0.36%-0.56%) cumulative increase over breast cancer deaths expected by 2030 in the absence of the pandemic's disruptions. Sensitivity analyses indicated that the breast cancer mortality impact would be approximately double if the modeled pandemic effects on screening, symptomatic diagnosis, and chemotherapy extended for 12 months.

Conclusions: Initial pandemic-related disruptions in breast cancer care will have a small long-term cumulative impact on breast cancer mortality. Continued efforts to ensure prompt return to screening and minimize delays in evaluation of symptomatic women can largely mitigate the effects of the initial pandemic-associated disruptions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344930PMC
http://dx.doi.org/10.1093/jnci/djab097DOI Listing

Publication Analysis

Top Keywords

breast cancer
40
model range
20
cancer mortality
16
cancer
13
cancer deaths
12
breast
10
impact covid-19
8
covid-19 pandemic
8
screening delays
8
reduced chemotherapy
8

Similar Publications

Multi-region ultrasound-based deep learning for post-neoadjuvant therapy axillary decision support in breast cancer.

EBioMedicine

September 2025

Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:

View Article and Find Full Text PDF

Background: Breast cancer is the most common cancer among women and a leading cause of mortality in Europe. Early detection through screening reduces mortality, yet participation in mammography-based programs remains suboptimal due to discomfort, radiation exposure, and accessibility issues. Thermography, particularly when driven by artificial intelligence (AI), is being explored as a noninvasive, radiation-free alternative.

View Article and Find Full Text PDF

Temporal trend and spatial analysis of breast cancer mortality in Paraná, 2012-2021.

Epidemiol Serv Saude

September 2025

Universidade Estadual do Norte do Paraná, Programa de Pós-Graduação em Enfermagem em Atenção Primária à Saúde Bandeirantes, PR, Brazil.

Objectives: To analyze the temporal trend and identify spatial clusters of breast cancer mortality in Paraná state between 2012 and 2021.

Methods: This was a time series study, with spatial analysis of breast cancer mortality rates in the 399 municipalities of Paraná. Data were selected from the Mortality Information System.

View Article and Find Full Text PDF

The objective of this study was to analyze the characteristics of avoidable mortality in the population aged five to 69 years living in the city of Pelotas/RS, comparing it with the rest of the state of Rio Grande do Sul, from 2000 to 2021. An ecological study was conducted analyzing avoidable mortality coefficients according to sex and age, from 2000 to 2021. The data source was the Mortality Information System, and the trend analysis was performed using Prais-Winsten regression, with standardization of coefficients.

View Article and Find Full Text PDF

[Mortality from female breast cancer attributable to overweight and obesity in Brazil].

Cien Saude Colet

August 2025

Programa de Pós-Graduação em Nutrição e Saúde, Universidade Estadual do Ceará. R. Betel 1958, Itaperi. 60714-230 Fortaleza CE Brasil.

This study aimed to evaluate mortality due to female breast cancer attributable to overweight and obesity and to estimate the number of preventable deaths with a reduction in the Body Mass Index in Brazil. An ecological study was carried out with investigation of information on overweight, obesity, sociodemographic characteristics based on a national survey carried out in 2013-14; breast cancer mortality rate in 2019 using the Online Atlas of Mortality and Relative Risk Meta-Analyses. The Potential Impact Fraction analysis was carried out, considering the following counterfactual scenarios related to the reduction in BMI: Scenario A - population contingent of women that make up the prevalence of overweight and obesity now composes the prevalence of eutrophy; Scenario B - population contingent of women that make up the prevalence of overweight starts to make up the prevalence of eutrophy; Scenario C - population contingent of women that make up the prevalence of obesity becomes part of the prevalence of overweight.

View Article and Find Full Text PDF