Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Monitoring water body quality parameters with high spatial and temporal resolutions is crucial because mitigation of pollution is usually costlier than early prevention/intervention. The existing monitoring methods for irrigation ponds in Taoyuan, Taiwan, are based on field measurements that have low spatial and temporal resolutions. In this study, using Landsat 8 satellite imagery, a multiple regression-derived relationship between the satellite band reflectance and the concentration of total phosphorus (TP) was established. The satellite imagery was atmospherically corrected with ACOLITE based on shortwave infrared (SWIR) bands. This method was used to select predictor variables in the multiple regression-derived equation based on forward selection of variables using a p value and variation inflation factor (VIF) threshold. The derived equation yielded a coefficient of determination (R) of 0.67. The near-infrared band (band 5) was found to be most significant. The Landsat 8 imagery retrieved for two of the three pond studies included only a few pixels from the ponds because parts of the pond surfaces are covered by floating photovoltaic power plants. The TP concentrations resulting from the derived equation indicate the feasibility of using satellite remote sensing methods to monitor the water quality. The derived relationships are potentially applicable to extend the availability of temporal and spatial water quality data for these irrigation ponds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-15159-9 | DOI Listing |