98%
921
2 minutes
20
Although it has been extensively studied for decades, the α-AlO:Cr phosphor has rarely been investigated for horticultural lighting. In this work, for the first time, a prototype of a plant growth light-emitting diode (LED) has been fabricated by coating a deep-red-emitting α-AlO:Cr phosphor onto a near-ultraviolet (NUV) chip. The α-AlO:Cr phosphor, synthesized by a co-precipitation method and annealed at 1500 °C for 2 h, emits an outstanding narrow peak at 695 nm. The α-AlO:0.6%Cr phosphor shows a high activation energy of 0.29 eV, a long lifetime of 3.4 ms, and a superior color purity of 100%. The chromatic coordinates and the QE value of the red LED obtained by coating an α-AlO:0.6%Cr phosphor on a NUV chip are ( = 0.5650, = 0.2429) and 87.1%, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt00115a | DOI Listing |
Dalton Trans
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
Single-component white-light-emitters ensure color stability while reducing device complexity, and are ideal candidates for white light-emitting diodes (WLEDs). However, the realization of single-component white-light emission with high efficiency and stability is still a challenge. Herein, a supramolecular cation strategy was used to synthesize the organic-inorganic hybrid copper(I) halide [(AMTA)(18C6)]CuI (1), with AMTA = 1-adamantanamine and 18C6 = 18-crown-6.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Physics, Indian Institute of Technology (ISM) Dhanbad, Jharkhand-826004, India.
Here, Ln-Li co-doped YO@ZnO core-shell heterostructures were synthesized by three different techniques - intermediate layer conversion method, a hydrothermal method, and an interlayer mediated hydrothermal method. The synthesis procedure is optimized based on the thickness and compactness of the developed shell. The growth kinetics and synthesis mechanism of each adopted method have been explained in detail using XRD, FESEM, TEM, SAED, and EDX characterization techniques.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Materials Science and Engineering, Changchun University of Science and Technology Changchun, 130022, Jilin, People's Republic of China.
The synergistic effect of various ions with optical properties is an important method to regulate the Er ion upconversion luminescence process. However, the energy processes between them are complicated and difficult to separate, and it is challenging to clarify the results of each process when multiple ions are co-doped. Herein, a series of NaYF:Er were synthesized by the low-temperature combustion method, and the luminescence color of Er ions was modulated by doping Yb ions and Tm ions.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan.
Liquid is the most flexible state of condensed matter and shows promise as a functional soft material. However, these same characteristics make it challenging to achieve efficient room-temperature phosphorescence (RTP) from metal-free organic molecular liquids. Herein, we report efficient RTP from liquefied thienyl diketones bearing one or two dimethyloctylsilyl (DMOS) substituents.
View Article and Find Full Text PDFLuminescence
September 2025
Department of Computational and Applied Mechanics, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
Rare-earth ions (REIs), especially trivalent lanthanides (Ln ), are central to photonic technologies due to sharp intra-4f transitions, long lifetimes, and host-insensitive emission. However, modeling REIs remains challenging due to localized 4f orbitals, strong electron correlation, and multiplet structures. This review summarizes atomistic modeling strategies combining quantum chemistry and machine learning (ML).
View Article and Find Full Text PDF