A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Facile fabrication of silica@covalent organic polymers core-shell composites as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase/ion-exchange chromatography. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Covalent organic polymers (COPs) are a promising class of cross-linked polymeric networks that attracted extensive attention in separation and analysis fields. Exploring facile and convenient strategy to prepare COPs-based mixed-mode stationary phases for high performance liquid chromatography (HPLC) has seriously lagged and has never been reported. Herein, we describe a facile in-situ grow strategy for fabrication of silica@COPs core-shell composites (SiO@TpBD-(OH)) as a novel mixed-mode stationary phase for HPLC. Owing to the co-existing of abundant hydroxyl, carbonyl, imine, cyclohexyl groups, and benzene rings in the skeleton of COPs shell, the developed mixed-mode stationary phase exhibits hydrophilic interaction liquid chromatography (HILIC)/reversed-phase liquid chromatography (RPLC)/ion-exchange chromatography (IEX) retention mechanisms. The content of acetonitrile, pH value, and salt concentration in the mobile phase were investigated on SiO@TpBD-(OH) packed column. In comparison to conventional single-mode columns, the SiO@TpBD-(OH) column showed flexible selectivity, enhanced separation performance, and superior resolution for benzene homologues, polycyclic aromatic hydrocarbons, nucleosides and bases, and acidic organic compounds. The column efficiency of p-nitrobenzoic acid was up to 54440 plates per meter. The packed column also possessed outstanding chromatographic repeatability for six nucleosides and bases with the RSDs of 0.07-0.23%, 0.58-1.77%, and 0.31-1.23% for retention time, peak area, and peak height, respectively. Besides, the SiO@TpBD-(OH) column offered baseline separation of multiple organic pollutants in lake water, which verified its great potential in real sample analysis. Overall, the silica@COPs core-shell composites not only provide a new candidate of mixed-mode stationary phases, but also extend the potential application of COPs in separation science.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2021.122524DOI Listing

Publication Analysis

Top Keywords

mixed-mode stationary
20
core-shell composites
12
stationary phase
12
liquid chromatography
12
organic polymers
8
stationary phases
8
silica@cops core-shell
8
packed column
8
sio@tpbd-oh column
8
nucleosides bases
8

Similar Publications