Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of efficient materials for energy storage applications has attracted considerable attention, especially for supercapacitors and batteries that are the most promising and important power sources in everyday life. For this purpose, a suitable and efficient current collector must be determined and its behavior with respect to various solvents when it is used as an electrode material for energy storage applications should be understood. In this work, we studied the effect of washing three-dimensional nickel foam using different concentrations of hydrochloric acid and ethanol on the surface characteristics, electrochemical behavior, and storage performance of the foam. Additionally, we observed the different types of acidic treatments that improved the electrochemical and storage performances of the three-dimensional nickel foam. The surface characterization results show that acidic conditions with a concentration of 3M changes the surface morphology from a flat/hill-like structure to a nanosheet/nanoflake-like structure without any further treatment. This structure provides a nano-channel and a large number of surface charges during the electrochemical reaction. The results of this study show that pretreatment of 3D-NF is highly important and recommended. The present work also contributes to the knowledgebase on pretreatment of 3D-NF and its optimization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234956PMC
http://dx.doi.org/10.3390/nano11061596DOI Listing

Publication Analysis

Top Keywords

energy storage
12
storage applications
12
current collector
8
three-dimensional nickel
8
nickel foam
8
pretreatment 3d-nf
8
storage
5
washing electrochemical
4
electrochemical performance
4
performance three-dimensional
4

Similar Publications

India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.

View Article and Find Full Text PDF

Ether-based electrolytes are widely acknowledged for their potential to form stable solid electrolyte interfaces (SEIs) for stable anode performance. However, conventional ether-based electrolytes have shown a tendency for cation-solvent co-intercalation phenomena on graphite electrodes, resulting in lower capacity and higher voltage platforms compared to those of neat cation insertion in ester-based electrolytes. In response, we propose the development of weakly solvating ether solvents to weaken the interaction between cations and solvents, thereby suppressing co-intercalation behavior.

View Article and Find Full Text PDF

Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.

View Article and Find Full Text PDF

Bioconversion of CO to methane energy by Methanococcus maripaludis in newly-designed bioreactor system: Kinetic characteristics, parameter optimization and grid-quality production.

Bioresour Technol

September 2025

State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technol

Carbon dioxide enhanced oil recovery (CO-EOR) is widely used for carbon capture, utilization, and storage in Chinese oilfields, but part of injected CO returns with produced oil, reducing carbon-reduction efficiency. Bioconverting this CO to methane energy by methanogens benefits the technology, yet on-site high-efficiency conversion meeting natural-gas grid standards remains challenging. This study used a newly-designed triple-tank bioreactor to investigate CO-to-methane conversion and methanogenic kinetics of Methanococcus maripaludis.

View Article and Find Full Text PDF

Room temperature ionic liquids show great promise as electrolytes in various technological applications, such as energy storage or electrotunable lubrication. These applications are particularly intriguing due to the specific behavior of ionic liquids in nanoconfinement. While previous research has been focused on optimizing the required characteristics through the selection of electrolyte properties, the contribution of confining material properties in these systems has been largely overlooked.

View Article and Find Full Text PDF