98%
921
2 minutes
20
Protein hydrolysates are, in general, mixtures of amino acids and small peptides able to supply the body with the constituent elements of proteins in a directly assimilable form. They are therefore characterised as products with high nutritional value. However, hydrolysed proteins display an unpleasant bitter taste and possible off-flavours which limit the field of their nutrition applications. The successful identification and characterisation of bitter protein hydrolysates and, more precisely, the peptides responsible for this unpleasant taste are essential for nutritional research. Due to the large number of peptides generated during hydrolysis, there is an urgent need to develop methods in order to rapidly characterise the bitterness of protein hydrolysates. In this article, two enzymatic hydrolysis kinetics of micellar milk caseins were performed for 9 h. For both kinetics, the optimal time to obtain a hydrolysate with appreciable organoleptic qualities is 5 h. Then, the influence of the presence or absence of peptides and their intensity over time compared to the different sensory characteristics of hydrolysates was studied using heat maps, random forests and regression trees. A total of 22 peptides formed during the enzymatic proteolysis of micellar caseins and influencing the bitterness the most were identified. These methods represent simple and efficient tools to identify the peptides susceptibly responsible for bitterness intensity and predict the main sensory feature of micellar casein enzymatic hydrolysates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228083 | PMC |
http://dx.doi.org/10.3390/foods10061312 | DOI Listing |
Mater Today Bio
October 2025
Radboud University Medical Center, Research Institute for Medical Innovation, Department of Medical BioSciences, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands.
Severe scarring is an inevitable consequence of large full-thickness skin wounds, often leading to long-term complications that affect patients' well-being and necessitate extended medical interventions. While autologous split-thickness skin grafts remain the clinical standard for wound treatment, they frequently result in contractures, excessive scarring, and the need for additional corrective procedures. To address these challenges, bioengineered skin substitutes capable of promoting efficient healing while reducing complications are highly desirable.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain. Electronic address:
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment, synaptic dysfunction, and neuronal loss. Neuroinflammation, driven by the activation of microglia and astrocytes, is a key contributor to AD pathology, amplifying oxidative stress and amyloid-β toxicity. Modulation of neuroinflammatory pathways thus represents a promising therapeutic strategy.
View Article and Find Full Text PDFFood Chem
September 2025
College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China. Electronic address: wangpei@nj
Selectively hydrolyzed soy protein can enhance wheat-based product quality by modulating gluten thermal polymerization. This study examined the effects of β-conglycinin (7S) and glycinin hydrolysate (GH) on gluten rheological and thermal properties, particle size, Raman spectra, and microstructure during heating. Both 7S and GH improved gluten viscoelasticity, with their combined addition (7S/GH) showing the strongest effect.
View Article and Find Full Text PDFFood Chem
September 2025
Institute of Food and Drug Research for One Health, Ludong University, Yantai, People's Republic of China; School of Food Engineering, Ludong University, Yantai, People's Republic of China. Electronic address:
Food-derived bioactive peptides exhibit therapeutic potentials in hypertension management in recent years. This review firstly synthesizes findings from a total of 62 relevant studies concerning the potentials of both plant- and animal-derived peptides. Secondly, the molecular targets and acting mechanisms underlying the antihypertensive effects of food-derived peptides are discussed.
View Article and Find Full Text PDFPrev Nutr Food Sci
August 2025
Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, West Java 40132, Indonesia.
Peptides produced from soybean tempeh that inhibit angiotensin-converting enzyme (ACE) provide a promising source of novel antihypertensive agents. This study utilized two cysteine proteases (papain and bromelain) to generate ACE inhibitory peptides from the protein hydrolysate of soybean tempeh. The trials were arranged using a Box-Behnken design to achieve optimal hydrolysis conditions.
View Article and Find Full Text PDF