98%
921
2 minutes
20
Understanding how species sort themselves into communities is essential to explain the mechanisms that maintain biodiversity. Important insights into potential mechanisms of coexistence may be obtained from observation of non-random patterns in community assembly. The spatial niche overlap (Pianka index) and co-occurrence (c-score) patterns in carabid species in three types of steppes (desert steppe, typical steppe, and meadow steppe) in China was investigated. Non randomness was tested using null models. Niche overlap values were significantly higher than expected by chance in the desert steppe, where vegetation cover is less abundant and less uniformly distributed, which possibly forces species to concentrate in certain places. In the typical and meadow steppes, results were influenced by the scale of the analysis. At a broad scale, niche separation was found as a result of species segregation among different sectors (habitats) within these steppes, but when the analysis was conducted at a finer scale, species appeared to be no more segregated than expected by chance. The high co-occurrence averages found in the meadow and typical steppes indicate that the distributions of the species found in a site may be negatively affected by the presence of other species, which suggests that some species tend to exclude (or reduce the abundance of) others. The very low c-score average observed in the desert steppe suggests that competition is not involved there. Thus, in more homogeneous landscapes (such as the typical and meadow steppes), competition might play some role in community structure, whereas spatial variation in the abundances of species is more driven by the uneven spatial distribution of vegetation in the landscape where productivity is lower and less uniformly distributed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222312 | PMC |
http://dx.doi.org/10.3897/zookeys.1044.62478 | DOI Listing |
Ecol Evol
September 2025
MPG Ranch Florence Montana USA.
DNA fecal metabarcoding has revolutionized the field of herbivore diet analyses, offering deeper insight into plant-herbivore interactions and more reliable ecological inferences. However, due to PCR amplification bias, primer selection has a major impact on the validity of these inferences and insights. Using two pooling approaches on four mock communities and a case study examining diets of four large mammalian herbivores (LMH), we evaluated the efficacy of two primer pairs targeting the internal transcribed spacer 2 (ITS2) region: the widely used ITS-S2F/ITS4 pair and the UniPlant F/R pair, designed specifically for DNA metabarcoding.
View Article and Find Full Text PDFJ Anim Ecol
September 2025
Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic.
Research Highlight: Chen, J., Wang, M. Q.
View Article and Find Full Text PDFCancer Lett
September 2025
Fox Chase Cancer Center, Protocol Support Laboratory, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
Historically, polyploid giant cancer cells (PGCCs) within tumors have been ignored as superfluous inflammatory refuse with no intrinsic clinical or biological relevance. However recently, multiple studies have described the existence PGCCs in solid tumor masses that appear to correlate with tumor progression, and can also appear in blood circulation as cancer associated macrophage like cells (CAMLs). In an effort to understand the clinical and biological role of CAMLs (i.
View Article and Find Full Text PDFSyst Biol
September 2025
Department of Biology, University of North Carolina at Chapel Hill, USA.
For many questions in ecology and evolution, the most relevant data to consider are attributes of lineage pairs. Comparative tests for causal relationships among traits like 'diet niche overlap', 'divergence time', and 'strength of reproductive isolation (RI)' - measured for pairwise combinations of related species or populations - have led to several groundbreaking insights, but the correct statistical approach for these analyses has never been clear. Lineage-pair traits are non-independent, but unlike the expected covariance among species' traits, which is captured by a phylogenetic covariance matrix arising from a given model, the expected covariance among lineage-pair traits has not been explicitly formulated.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA.
and are Gram-negative opportunistic pathogens that frequently colonize the human body and are major causes of infection. These bacteria are often co-isolated in polymicrobial urinary tract and lung infections, the latter of which is associated with increased disease severity and worse clinical outcomes. Despite their overlapping niches and clinical relevance, little is known about how these two pathogens interact and how those interactions influence human health.
View Article and Find Full Text PDF