98%
921
2 minutes
20
Background: With the continued integration of engineered nanomaterials (ENMs) into everyday applications, it is important to understand their potential for inducing adverse human health effects. However, standard in vitro hazard characterisation approaches suffer limitations for evaluating ENM and so it is imperative to determine these potential hazards under more physiologically relevant and realistic exposure scenarios in target organ systems, to minimise the necessity for in vivo testing. The aim of this study was to determine if acute (24 h) and prolonged (120 h) exposures to five ENMs (TiO, ZnO, Ag, BaSO and CeO) would have a significantly different toxicological outcome (cytotoxicity, (pro-)inflammatory and genotoxic response) upon 3D human HepG2 liver spheroids. In addition, this study evaluated whether a more realistic, prolonged fractionated and repeated ENM dosing regime induces a significantly different toxicity outcome in liver spheroids as compared to a single, bolus prolonged exposure.
Results: Whilst it was found that the five ENMs did not impede liver functionality (e.g. albumin and urea production), induce cytotoxicity or an IL-8 (pro-)inflammatory response, all were found to cause significant genotoxicity following acute exposure. Most statistically significant genotoxic responses were not dose-dependent, with the exception of TiO. Interestingly, the DNA damage effects observed following acute exposures, were not mirrored in the prolonged exposures, where only 0.2-5.0 µg/mL of ZnO ENMs were found to elicit significant (p ≤ 0.05) genotoxicity. When fractionated, repeated exposure regimes were performed with the test ENMs, no significant (p ≥ 0.05) difference was observed when compared to the single, bolus exposure regime. There was < 5.0% cytotoxicity observed across all exposures, and the mean difference in IL-8 cytokine release and genotoxicity between exposure regimes was 3.425 pg/mL and 0.181%, respectively.
Conclusion: In conclusion, whilst there was no difference between a single, bolus or fractionated, repeated ENM prolonged exposure regimes upon the toxicological output of 3D HepG2 liver spheroids, there was a difference between acute and prolonged exposures. This study highlights the importance of evaluating more realistic ENM exposures, thereby providing a future in vitro approach to better support ENM hazard assessment in a routine and easily accessible manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240362 | PMC |
http://dx.doi.org/10.1186/s12951-021-00938-w | DOI Listing |
Environ Int
September 2025
Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States. Electronic address:
Background: Although per- and polyfluoroalkyl substances (PFAS) have been linked to chronic liver diseases, the specific cellular and molecular mechanisms by which different PFAS contribute to human liver dysfunction remain unclear. This study aims to elucidate those mechanisms.
Methods: We exposed a multi-donor human liver spheroid model composed of multiple cell types to 20 µM of PFHxS, PFOA, PFOS, or PFNA for seven days, followed by single-cell RNA sequencing and lipid staining.
Acta Pharmacol Sin
September 2025
National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060,
Chemoresistance is a major factor contributing to the poor prognosis of osteosarcoma. Increasing evidence underscores the pivotal role of enhanced tumor stemness in driving drug resistance. In this study we investigated the molecular mechanisms underlying the chemoresistance and stemness in osteosarcoma.
View Article and Find Full Text PDFBiomolecules
August 2025
Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Brussels Health Campus, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
C-C motif chemokine receptor-like 2 (CCRL2) is an atypical chemokine receptor (ACKR) that binds chemerin with high affinity but lacks classical G protein-coupled signaling. Instead, it functions as a non-signaling presenter of chemerin to CMKLR1-expressing cells, modulating antitumor immunity. CCRL2 is highly expressed in the tumor microenvironment and various human cancers, and its expression has been linked to delayed tumor growth in mouse models, primarily through the chemerin/CMKLR1 axis.
View Article and Find Full Text PDFArch Toxicol
August 2025
Experimental Research Unit (UNIPEX), Botucatu Medical School, São Paulo State University (UNESP), Av. Prof. Mário Rubens Guimarães Montenegro, s/n -Rubião Jr, Botucatu/SP, 18618687, Brazil.
The tumor microenvironment (TME) influences hepatocellular carcinoma (HCC) behavior and disease progression. Cell-cell dynamics of non-parenchymal components, such as hepatic stellate cells (HSC), are key factors in understanding HCC onset and progression. This study established mono- and co-culture in vitro HCC models in both 2D and 3D configurations to investigate HCC cell behavior at both functional and transcriptional levels.
View Article and Find Full Text PDFBiomater Sci
August 2025
Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, 5016 Emerging Technologies Building, 5032 Emerging Technologies Building, College Station, TX 77843, USA.
models aim to improve biomimicry of tissues and disease processes. Decellularized extracellular matrix (dECM) scaffolds mimic cellular interactions with 3D tissue architecture. These complex 3D models require parallel advancements in analytical methods to quantify functional outputs with respect to scaffold architecture and recellularization while retaining spatial integrity.
View Article and Find Full Text PDF