Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This research work proposes a novel method for realistic and real-time modelling of deformable biological tissues by the combination of the traditional finite element method (FEM) with constrained Kalman filtering. This methodology transforms the problem of deformation modelling into a problem of constrained filtering to estimate physical tissue deformation online. It discretises the deformation of biological tissues in 3D space according to linear elasticity using FEM. On the basis of this, a constrained Kalman filter is derived to dynamically compute mechanical deformation of biological tissues by minimizing the error between estimated reaction forces and applied mechanical load. The proposed method solves the disadvantage of costly computation in FEM while inheriting the superiority of physical fidelity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2021.104594 | DOI Listing |