98%
921
2 minutes
20
The EVIDENCE (EValuatIng connecteD sENsor teChnologiEs) checklist was developed by a multidisciplinary group of content experts convened by the Digital Medicine Society, representing the clinical sciences, data management, technology development, and biostatistics. The aim of EVIDENCE is to promote high quality reporting in studies where the primary objective is an evaluation of a digital measurement product or its constituent parts. Here we use the terms digital measurement product and connected sensor technology interchangeably to refer to tools that process data captured by mobile sensors using algorithms to generate measures of behavioral and/or physiological function. EVIDENCE is applicable to 5 types of evaluations: (1) proof of concept; (2) verification, (3) analytical validation, and (4) clinical validation as defined by the V3 framework; and (5) utility and usability assessments. Using EVIDENCE, those preparing, reading, or reviewing studies evaluating digital measurement products will be better equipped to distinguish necessary reporting requirements to drive high-quality research. With broad adoption, the EVIDENCE checklist will serve as a much-needed guide to raise the bar for quality reporting in published literature evaluating digital measurements products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215946 | PMC |
http://dx.doi.org/10.1159/000515835 | DOI Listing |
ISA Trans
August 2025
Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, PR China; School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China. Electronic addr
With the deep digital transformation of traditional manufacturing industry and the continuous automation level improvement of production lines, it is more important to predict the Key Performance Indicators (KPIs) of processes in a timely and accurate manner. The traditional laboratory destructive test method for obtaining KPIs consumes a large amount of time and incurs high costs, which not only fails to provide timely and effective guidance for production processes but also results in significant losses for manufacturing enterprises. To address these issues, an online prediction soft sensor model for KPIs based on a serial-parallel gated recurrent unit with self-attention mechanism (SPGRU-SA) soft sensor model is proposed.
View Article and Find Full Text PDFBiomater Adv
September 2025
Key Laboratory of Artificial Intelligence & Micro Nano Sensors, Shanxi Province, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, C
This study addresses critical technical challenges in fabricating functional pigmented skin models via 3D bioprinting through the synergistic integration of droplet-based deposition and precision motion control. A hybrid bioprinting strategy was developed to create multilayer biomimetic architectures: the dermal layer was fabricated through extrusion of gelatin methacryloyl-polyacrylamide (GelMA-PAM) composites, while the epidermal layer incorporated precisely patterned melanocyte-laden GelMA-PAM arrays deposited via microvalve technology, subsequently solidified and populated with keratinocytes. To enhance printing reliability, a fractional-order proportional-integral control system optimized through particle swarm optimization (PSO-FOPI) was implemented, significantly improving motor speed regulation and positioning accuracy.
View Article and Find Full Text PDFACS Omega
August 2025
Laboratoire Matériaux Avancés et Phénomènes Quantiques, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, Tunis 2092, Tunisia.
This paper reports the use of P18-8, a novel conjugated polymer combining poly-(1,4-phenylene-ethynylene) and poly-(1,4-phenylene-vinylene), in the fabrication of an organic diode with the structure ITO/PEDOT:PSS/P18-8/LiF/Al. The electrical properties of the fabricated device were characterized using impedance spectroscopy across a frequency range of 100 Hz to 1 MHz at various applied voltages. The current density-voltage (-) characteristic exhibited ohmic behavior at low applied voltages, while at higher voltages, it conformed to the space charge limited current (SCLC) theory.
View Article and Find Full Text PDFJ Anim Ecol
September 2025
School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
Understanding how animals respond to ecological constraints is crucial for interpreting the dynamics of social networks in the wild. We investigated how experimentally induced changes in perceived predation risk and food abundance influence the social behaviour of wild rock hyraxes (Procavia capensis), using experimental manipulations and a meta-analytical framework. We used proximity sensors, trail cameras and observations to record multiple aspects of social interactions.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Qilian Alpine Ecology and Hydrology Research Station, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; University of Chinese Academy of Sciences, Beijing, China. Electron
High-altitude and high-latitude ecosystems are among the most vulnerable to climate change and human disturbance, with widespread degradation threatening their role in water regulation, biodiversity conservation, and carbon sequestration. Livestock-exclusion enclosure is widely applied for alpine restoration, yet its ecological outcomes remain poorly understood across elevation gradients and ecosystem types. To address this, a 15-year grazing-exclusion experiment was conducted in a vertical transect spanning 2980-4164 m a.
View Article and Find Full Text PDF