A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Soil erosion assessment in the Blue Nile Basin driven by a novel RUSLE-GEE framework. | LitMetric

Soil erosion assessment in the Blue Nile Basin driven by a novel RUSLE-GEE framework.

Sci Total Environ

State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Assessment of soil loss and understanding its major drivers are essential to implement targeted management interventions. We have proposed and developed a Revised Universal Soil Loss Equation framework fully implemented in the Google Earth Engine cloud platform (RUSLE-GEE) for high spatial resolution (90 m) soil erosion assessment. Using RUSLE-GEE, we analyzed the soil loss rate for different erosion levels, land cover types, and slopes in the Blue Nile Basin. The results showed that the mean soil loss rate is 39.73, 57.98, and 6.40 t ha yr for the entire Blue Nile, Upper Blue Nile, and Lower Blue Nile Basins, respectively. Our results also indicated that soil protection measures should be implemented in approximately 27% of the Blue Nile Basin, as these areas face a moderate to high risk of erosion (>10 t ha yr). In addition, downscaling the Tropical Rainfall Measuring Mission (TRMM) precipitation data from 25 km to 1 km spatial resolution significantly impacts rainfall erosivity and soil loss rate. In terms of soil erosion assessment, the study showed the rapid characterization of soil loss rates that could be used to prioritize erosion mitigation plans to support sustainable land resources and tackle land degradation in the Blue Nile Basin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.148466DOI Listing

Publication Analysis

Top Keywords

blue nile
28
soil loss
24
nile basin
16
soil erosion
12
erosion assessment
12
loss rate
12
soil
10
spatial resolution
8
blue
7
nile
7

Similar Publications