Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Wastewater is always composed of different pollutants, most of which are toxic to the living being. It is very tough to separate all those diverse groups of contaminants using a single process or single material. Rather a sustainable and environment friendly processes should be adapted to restrict the secondary pollution generation. Nanoclay and its nanocomposites are one of the most used adsorbents that have been modified and used for the separation of almost all types of pollutants, including dyes, heavy metals, fluoride, nitrate, ammonia, emerging pollutants and bacteria. They are relatively inexpensive, easy to exploit and relatively maintenance-free. Thus, recent research bloomed for developing suitable adsorbents, including clay nanocomposites. The advantages and drawbacks of all the clay nanocomposites-based processes have been discussed critically in this article. Nano-clays or other nanoparticles incorporated synthetic and natural polymers-based clay nanocomposites were synthesized, and it was found that they can remove dyes in the range between 48 mg/g and 1994 mg/g. Similarly, they separate a diverse group of heavy metal ions, including As, Cu, Co, Pd, Zn, Cr, Ni, Cd, and Hg, in the range of 0.073-1667 mg/g. The clay nanocomposites also showed fluoride removal efficacy in the range of 0.134-23 mg/g. They are also useful for the separation of emerging pollutants like pesticides, pharmaceuticals, personal care products, trace elements, and particulate matters in the range of 0.1-651 mg/g the clay nanocomposites showed considerable nitrate, ammonia and bacteria removal efficacy too. Though it seems promising, more investigations with real wastewater and pilot-scale studies are recommended to explore large-scale wastewater treatment capabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.130961 | DOI Listing |