98%
921
2 minutes
20
The polysaccharide composition and dynamics of the intact stem and leaf cell walls of the model grass are investigated to understand how developmental stage affects the polysaccharide structure of grass cell walls. C enrichment of the entire plant allowed detailed analysis of the xylan structure, side-chain functionalization, dynamics, and interaction with cellulose using magic-angle-spinning solid-state NMR spectroscopy. Quantitative one-dimensional C NMR spectra and two-dimensional C-C correlation spectra indicate that stem and leaf cell walls contain less pectic polysaccharides compared to previously studied seedling primary cell walls. Between the stem and the leaf, the secondary cell wall-rich stem contains more xylan and more cellulose compared to the leaf. Moreover, the xylan chains are about twofold more acetylated and about 60% more ferulated in the stem. These highly acetylated and ferulated xylan chains adopt a twofold conformation more prevalently and interact more extensively with cellulose. These results support the notion that acetylated xylan is found more in the twofold screw conformation, which preferentially binds cellulose. This in turn promotes cellulose-lignin interactions that are essential for the formation of the secondary cell wall.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210444 | PMC |
http://dx.doi.org/10.1021/acsomega.1c01978 | DOI Listing |
J Physiol
September 2025
Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, USA.
Diagnoses of prediabetes and metabolic syndromes, such as metabolic-associated steatotic liver disease (MASLD), are increasing at an alarming rate worldwide, often simultaneously. A significant consequence of these is high risk of cardiovascular disease, highlighting the need for cardiac-specific therapeutics for intervention during the prediabetic stage. Recent studies have demonstrated that chemogenetic activation of the cardiac parasympathetic system through hypothalamic oxytocin (OXT) neurons provides cardioprotective effects in heart disease models by targeting excitatory neurotransmission to brainstem cardiac vagal neurons.
View Article and Find Full Text PDFPol Merkur Lekarski
September 2025
I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE.
Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..
Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.
Cell Tissue Res
September 2025
Grupo de Investigaciones Biológicas y Moleculares (GIByM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA NEA), Universidad Nacional del Nordeste (UNNE)-CONICET, Corrientes, Argentina.
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a crucial process in both physiological and pathological contexts, including cancer. Phospholipases A (PLAs), enzymes found in snake venoms, have attracted attention due to their potential antiangiogenic properties. In this study, we explored the antiangiogenic effects of PLA isoforms isolated from Bothrops diporus venom using a combination of in vivo and ex vivo models.
View Article and Find Full Text PDFMycorrhiza
September 2025
Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
Ectomycorrhizal fungi (EMF) colonize roots to establish symbiotic associations with plants. Sporocarps of the EMF Tuber spp. are considered as a delicacy in numerous countries and is a kind of EMF of great economic and social importance.
View Article and Find Full Text PDFFEMS Yeast Res
September 2025
Department of Bioengineering, School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
The growing challenges posed by global warming and the demand for sustainable food and feed resources underscore the need for robust microbial platforms in bioprocessing. Thermotolerant yeasts have emerged as promising candidates due to their ability to thrive at elevated temperatures and other industrially relevant stresses. This review examines the industrial potential of thermotolerant yeasts in the context of climate change, emphasizing how their resilience can lead to more energy-efficient and cost-effective bioprocesses.
View Article and Find Full Text PDF