98%
921
2 minutes
20
Populations adapt to novel environmental conditions by genetic changes or phenotypic plasticity. Plastic responses are generally faster and can buffer fitness losses under variable conditions. Plasticity is typically modeled as random noise and linear reaction norms that assume simple one-to-one genotype-phenotype maps and no limits to the phenotypic response. Most studies on plasticity have focused on its effect on population viability. However, it is not clear, whether the advantage of plasticity depends solely on environmental fluctuations or also on the genetic and demographic properties (life histories) of populations. Here we present an individual-based model and study the relative importance of adaptive and nonadaptive plasticity for populations of sexual species with different life histories experiencing directional stochastic climate change. Environmental fluctuations were simulated using differentially autocorrelated climatic stochasticity or noise color, and scenarios of directional climate change. Nonadaptive plasticity was simulated as a random environmental effect on trait development, while adaptive plasticity as a linear, saturating, or sinusoidal reaction norm. The last two imposed limits to the plastic response and emphasized flexible interactions of the genotype with the environment. Interestingly, this assumption led to (a) smaller phenotypic than genotypic variance in the population (many-to-one genotype-phenotype map) and the coexistence of polymorphisms, and (b) the maintenance of higher genetic variation-compared to linear reaction norms and genetic determinism-even when the population was exposed to a constant environment for several generations. Limits to plasticity led to genetic accommodation, when costs were negligible, and to the appearance of cryptic variation when limits were exceeded. We found that adaptive plasticity promoted population persistence under red environmental noise and was particularly important for life histories with low fecundity. Populations producing more offspring could cope with environmental fluctuations solely by genetic changes or random plasticity, unless environmental change was too fast.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8207414 | PMC |
http://dx.doi.org/10.1002/ece3.7485 | DOI Listing |
J Exp Biol
August 2025
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1050, USA.
We investigated the potential for cross-generational plasticity to influence how offspring respond to hypoxia and ocean acidification (hereafter HypOA) in the coastal forage fish Atlantic silverside (Menidia menidia). Mature wild silversides were treated with a control [dissolved oxygen (DO):100% air saturation (a.s.
View Article and Find Full Text PDFTrends Ecol Evol
July 2025
School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
Biological invasions stand among the main anthropogenic threats to ecosystems globally while causing multitrillion-dollar impacts. Surprisingly, while trait-based frameworks have been designed to predict invasion success and invader ecological impacts, no such approaches exist to understand and predict economic impacts. We propose the first such framework by bridging the evolutionary biology of traits and the escalation of invasion costs.
View Article and Find Full Text PDFBehav Brain Res
May 2025
Dept of Biology, University of Crete, Greece; Institute of Molecular Biology and Biotechnology - Foundation for Research and Technology Hellas, Heraklion, Greece. Electronic address:
Working memory (WM) is a cognitive ability that allows the short-term maintenance and manipulation of information for goal-directed behavior. The prefrontal cortex (PFC) and the hippocampus (HPC) are two brain regions implicated in WM task performance. Several studies indicate that training in WM (WMT) can enhance performance in various other cognitive tasks.
View Article and Find Full Text PDFEcology
January 2025
Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Species interactions can contribute to species turnover when the outcomes of the interactions are context dependent (e.g., change along environmental gradients).
View Article and Find Full Text PDFBMC Ecol Evol
December 2024
Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.
Lygodactylus geckos represent a well-documented radiation of miniaturized lizards with diverse life-history traits that are widely distributed in Africa, Madagascar, and South America. The group has diversified into numerous species with high levels of morphological similarity. The evolutionary processes underlying such diversification remain enigmatic, because species live in different ecological biomes, ecoregions and microhabitats, while suggesting strikingly high levels of homoplasy.
View Article and Find Full Text PDF