98%
921
2 minutes
20
In human neurodegenerative diseases associated with the intracellular aggregation of Tau protein, the ordered cores of Tau filaments adopt distinct folds. Here, we analyze Tau filaments isolated from the brain of individuals affected by Prion-Protein cerebral amyloid angiopathy (PrP-CAA) with a nonsense mutation in the PRNP gene that leads to early termination of translation of PrP (Q160Ter or Q160X), and Gerstmann-Sträussler-Scheinker (GSS) disease, with a missense mutation in the PRNP gene that leads to an amino acid substitution at residue 198 (F198S) of PrP. The clinical and neuropathologic phenotypes associated with these two mutations in PRNP are different; however, the neuropathologic analyses of these two genetic variants have consistently shown the presence of numerous neurofibrillary tangles (NFTs) made of filamentous Tau aggregates in neurons. We report that Tau filaments in PrP-CAA (Q160X) and GSS (F198S) are composed of 3-repeat and 4-repeat Tau isoforms, having a striking similarity to NFTs in Alzheimer disease (AD). In PrP-CAA (Q160X), Tau filaments are made of both paired helical filaments (PHFs) and straight filaments (SFs), while in GSS (F198S), only PHFs were found. Mass spectrometry analyses of Tau filaments extracted from PrP-CAA (Q160X) and GSS (F198S) brains show the presence of post-translational modifications that are comparable to those seen in Tau aggregates from AD. Cryo-EM analysis reveals that the atomic models of the Tau filaments obtained from PrP-CAA (Q160X) and GSS (F198S) are identical to those of the Tau filaments from AD, and are therefore distinct from those of Pick disease, chronic traumatic encephalopathy, and corticobasal degeneration. Our data support the hypothesis that in the presence of extracellular amyloid deposits and regardless of the primary amino acid sequence of the amyloid protein, similar molecular mechanisms are at play in the formation of identical Tau filaments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270882 | PMC |
http://dx.doi.org/10.1007/s00401-021-02336-w | DOI Listing |
J Neurochem
September 2025
Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA.
The two most prominent post-translational modifications of pathologic tau are Ser/Thr/Tyr phosphorylation and Lys acetylation. Whether acetylation impacts the susceptibility of tau to templated seeding in diseases like Alzheimer's disease (AD) and Progressive Supranuclear Palsy (PSP) is largely uncharacterized. Towards this, we examined how acetylation mimicking or nullifying mutations on five sites of tau (K311, K353, K369, K370, K375), located within the tau filament core, influenced the susceptibility of P301L (PL) tau to seeds from AD (AD-tau) or PSP (PSP-tau) brain donors in HEK293T cells.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
Talisman Therapeutics, Babraham Research Campus, Cambridge, UK.
Introduction: Mutations in the MAPT gene that are causal for frontotemporal dementia (FTD) lead to mislocalization of tau protein to the neuronal cell body, changing microtubule dynamics to disrupt the nuclear envelope and nucleocytoplasmic transport.
Methods: We report a high content imaging-based phenotypic screen to identify novel small molecules that correct nuclear envelope defects in human neurons expressing the MAPT IVS10+16 mutation causal for FTD.
Results: Screening a 19,786-compound chemical diversity library, we identified > 100 compounds that corrected nuclear membrane defects in MAPT IVS10+16 neurons, with 23 demonstrating robust dose-dependent rescue.
Cytoskeleton (Hoboken)
September 2025
Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan.
The precise control of microtubule dynamics is essential for diverse cellular processes and is a promising target for optical regulation using photoresponsive molecules. In this study, we developed Tau-derived peptides bearing azobenzene moieties on their side chains that enabled reversible photocontrol of microtubule polymerization by binding to the inside of microtubules. Two peptide derivatives with azobenzene located at different positions were synthesized by simple on-resin Fmoc solid-phase chemistry.
View Article and Find Full Text PDFBiochemistry
August 2025
Department of Neuroscience, Developmental and Regenerative Biology, University of Texas atSan Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States.
Neurofibrillary tangles are intracellular aggregates composed of the microtubule-associated protein tau. These insoluble aggregates are found in the brain of those affected by Alzheimer's disease and other related tauopathies. Hyperphosphorylation of tau in disease has been hypothesized to cause tau to dissociate from microtubules and form amyloid-like oligomers and fibrils.
View Article and Find Full Text PDFAutophagy
September 2025
Center for Brain Research, Indian Institute of Science, Bangalore, India.
MAPT/tau proteins propagate between brain regions in a prion-like manner, driving the onset and progression of dementia in Alzheimer disease (AD). However, the basis for variability in dementia progression among AD patients remains poorly understood. Here, we demonstrate that cognitively resilient AD patients, characterized by reduced MAPT/tau pathology, maintain lysosomal integrity, whereas cognitively vulnerable patients, exhibiting greater MAPT/tau burden, display lysosomal dysfunction.
View Article and Find Full Text PDF