98%
921
2 minutes
20
deficiency causes a spectrum of clinical phenotypes related to skeletal dysplasia and short stature, including Léri-Weill dyschondrosteosis, Langer mesomelic dysplasia, Turner syndrome, and idiopathic short stature. SHOX controls chondrocyte proliferation and differentiation, bone maturation, and cellular growth arrest and apoptosis transcriptional regulation of its direct target genes , , and . However, our understanding of SHOX-related pathways is still incomplete. To elucidate the underlying molecular mechanisms and to better understand the broad phenotypic spectrum of deficiency, we aimed to identify novel SHOX targets. We analyzed differentially expressed genes in -overexpressing human fibroblasts (NHDF), and confirmed the known SHOX target genes and among the most strongly regulated genes, together with 143 novel candidates. Altogether, 23 genes were selected for further validation, first by whole-body characterization in developing -deficient zebrafish embryos, followed by tissue-specific expression analysis in three -expressing zebrafish tissues: head (including brain, pharyngeal arches, eye, and olfactory epithelium), heart, and pectoral fins. Most genes were physiologically relevant in the pectoral fins, while only few genes were also significantly regulated in head and heart tissue. Interestingly, multiple family members (, , , and ) were significantly dysregulated in -deficient pectoral fins together with other genes (, , , , , and ), highlighting an important role for these genes in -related growth disorders. Network-based analysis integrating data from the Ingenuity pathways revealed that most of these genes act in a common network. Our results provide novel insights into the genetic pathways and molecular events leading to the clinical manifestation of deficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191631 | PMC |
http://dx.doi.org/10.3389/fgene.2021.688808 | DOI Listing |
Elife
September 2025
Human Biology and Primate Evolution, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.
View Article and Find Full Text PDFClin Appl Thromb Hemost
September 2025
Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
September 2025
School of Bioengineering and Biosciences, Department of Biochemistry, Lovely Professional University, Punjab, 144411, India.
Purpose: This study investigates codon usage and amino acid usage bias in the genus Acinetobacter to uncover the evolutionary forces shaping these patterns and their implications for pathogenicity and biotechnology.
Methods: Codon usage patterns were examined in representative genomes of the genus Acinetobacter using standard codon bias indices, including GC content, relative synonymous codon usage (RSCU), effective number of codons (ENC), and codon adaptation index (CAI). Neutrality and parity plots were employed to evaluate the relative influence of mutational pressure and natural selection on codon preferences.
Mol Biol Rep
September 2025
Department of Biosciences, Integral University, Kursi Road, Lucknow, 226026, India.
Background: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes.
Methods: Water samples were collected seasonally from different sites of Gomti and Ganga River.
Mol Biol Rep
September 2025
Department of Medical Lab Technology, College of health and medical technology, Sulaimani Polytechnic University, Sulaimani, 46001, Kurdistan Region, Iraq.
Background: Sinusitis is a common respiratory infection increasingly associated with antibiotic-resistant Staphylococcus aureus, posing significant treatment challenges. The emergence of methicillin-resistant S. aureus (MRSA) in sinus infections necessitates comprehensive profiling of resistance patterns to guide effective therapy.
View Article and Find Full Text PDF