A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Cooperativity between β-agonists and c-Abl inhibitors in regulating airway smooth muscle relaxation. | LitMetric

Cooperativity between β-agonists and c-Abl inhibitors in regulating airway smooth muscle relaxation.

FASEB J

Department of Medicine, Pulmonary and Critical Care Medicine, Center for Translational Medicine, Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA.

Published: July 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current therapeutic approaches to avoid or reverse bronchoconstriction rely primarily on β2 adrenoceptor agonists (β-agonists) that regulate pharmacomechanical coupling/cross bridge cycling in airway smooth muscle (ASM). Targeting actin cytoskeleton polymerization in ASM represents an alternative means to regulate ASM contraction. Herein we report the cooperative effects of targeting these distinct pathways with β-agonists and inhibitors of the mammalian Abelson tyrosine kinase (Abl1 or c-Abl). The cooperative effect of β-agonists (isoproterenol) and c-Abl inhibitors (GNF-5, or imatinib) on contractile agonist (methacholine, or histamine) -induced ASM contraction was assessed in cultured human ASM cells (using Fourier Transfer Traction Microscopy), in murine precision cut lung slices, and in vivo (flexiVent in mice). Regulation of intracellular signaling that regulates contraction (pMLC20, pMYPT1, pHSP20), and actin polymerization state (F:G actin ratio) were assessed in cultured primary human ASM cells. In each (cell, tissue, in vivo) model, c-Abl inhibitors and β-agonist exhibited additive effects in either preventing or reversing ASM contraction. Treatment of contracted ASM cells with c-Abl inhibitors and β-agonist cooperatively increased actin disassembly as evidenced by a significant reduction in the F:G actin ratio. Mechanistic studies indicated that the inhibition of pharmacomechanical coupling by β-agonists is near optimal and is not increased by c-Abl inhibitors, and the cooperative effect on ASM relaxation resides in further relaxation of ASM tension development caused by actin cytoskeleton depolymerization, which is regulated by both β-agonists and c-Abl inhibitors. Thus, targeting actin cytoskeleton polymerization represents an untapped therapeutic reserve for managing airway resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802313PMC
http://dx.doi.org/10.1096/fj.202100154RDOI Listing

Publication Analysis

Top Keywords

c-abl inhibitors
24
actin cytoskeleton
12
asm contraction
12
asm cells
12
asm
10
β-agonists c-abl
8
airway smooth
8
smooth muscle
8
targeting actin
8
cytoskeleton polymerization
8

Similar Publications