Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In Alzheimer's disease (AD) models, AD risk variants in the microglial-expressed TREM2 gene decrease Aβ plaque-associated microgliosis and increase neuritic dystrophy as well as plaque-associated seeding and spreading of tau aggregates. Whether this Aβ-enhanced tau seeding/spreading is due to loss of microglial function or a toxic gain of function in TREM2-deficient microglia is unclear. Depletion of microglia in mice with established brain amyloid has no effect on amyloid but results in less spine and neuronal loss. Microglial repopulation in aged mice improved cognitive and neuronal deficits. In the context of AD pathology, we asked whether microglial removal and repopulation decreased Aβ-driven tau seeding and spreading. We show that both TREM2KO and microglial ablation dramatically enhance tau seeding and spreading around plaques. Interestingly, although repopulated microglia clustered around plaques, they had a reduction in disease-associated microglia (DAM) gene expression and elevated tau seeding/spreading. Together, these data suggest that TREM2-dependent activation of the DAM phenotype is essential in delaying Aβ-induced pathological tau propagation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190588PMC
http://dx.doi.org/10.1084/jem.20210542DOI Listing

Publication Analysis

Top Keywords

seeding spreading
16
tau seeding
12
tau seeding/spreading
8
loss microglial
8
tau
7
activated microglia
4
microglia mitigate
4
mitigate aβ-associated
4
aβ-associated tau
4
seeding
4

Similar Publications

pv. is a pathogen of rice responsible for bacterial leaf streak, a disease that can cause up to 32% yield loss. While it was first reported a century ago in Asia, its first report in Africa was in the 1980s.

View Article and Find Full Text PDF

Optimizing maize late wilt disease management: A comparative assessment of bacterial biocontrol and Azoxystrobin alone and in combination.

Pestic Biochem Physiol

November 2025

Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.

Maize (Zea mays L.) is one of the world's most widely cultivated and economically important cereal crop, serving as a staple food and feed source in over 170 countries. However, its global productivity is threatened by late wilt disease (LWD), a disease caused by Magnaporthiopsis maydis, that spreads through soil and seeds and can cause severe yield losses.

View Article and Find Full Text PDF

Background: Connexin (Cx) hemichannels (HCs) contribute to glioblastoma (GBM) progression by facilitating intercellular communication and releasing pro-tumorigenic molecules, including ATP and glutamate.

Methods: The efficacy of abEC1.1, a monoclonal antibody that inhibits Cx26, Cx30, and Cx32 HCs, was assessed in vitro by measuring invasion capability, dye and Ca uptake, glutamate and ATP release in patient-derived GBM cultures or organoids.

View Article and Find Full Text PDF

Differential role of C-terminal truncations on alpha-synuclein pathology and Lewy body formation.

NPJ Parkinsons Dis

August 2025

Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Alpha-synuclein (aSyn) post-translational modifications (PTM), especially phosphorylation at serine 129 and C-terminal truncations, are highly enriched in Lewy bodies (LB), Lewy neurites, and other pathological aggregates in Parkinson's disease and synucleinopathies. However, the precise role of these PTM in pathology formation, neurodegeneration, and pathology spreading remains unclear. Here, we systematically investigated the role of post-fibrillization C-terminal aSyn truncations in regulating uptake, processing, seeding, and LB-like inclusion formation using a neuronal seeding model that recapitulates LB formation and neurodegeneration.

View Article and Find Full Text PDF

Nodes that play strategic roles in networks are called critical or influential nodes. For example, in an epidemic, we can control the infection spread by isolating critical nodes; in marketing, we can use certain nodes as the initial spreaders aiming to reach the largest part of the network, or they can be selected for removal in targeted attacks to maximise the fragmentation of the network. In this study, we focus on critical node detection in temporal networks.

View Article and Find Full Text PDF