98%
921
2 minutes
20
Intravenous immunoglobulin (IVIG) is an effective immunomodulatory treatment for immune dysregulation diseases. However, the mechanisms by which it reduces systemic inflammation are not well understood. NK cell cytotoxicity is decreased by IVIG in women with reduced fertility, but IVIG effects on NK cells in immune dysregulation are less clear. We hypothesized that IVIG modulation of lymphocyte function, especially in NK cells, is important for resolution of inflammation. Our aim was to identify IVIG-induced changes in a cohort of patients with Kawasaki disease (KD) and those that occur broadly in pediatric patients with various immune dysregulatory diseases. Peripheral blood mononuclear cells (PBMCs) of patients with KD or autoimmune/inflammatory diseases were phenotyped pre and post high dose IVIG treatment by flow cytometry. In KD patients, after IVIG infusion T cell frequency and the proportion of activated CD25 immunoregulatory CD56 NK cells was increased, and multiple lymphocyte subsets showed increased expression of the lymphoid tissue homing receptor CD62L. Importantly, IVIG treatment decreased the frequency of cells expressing the degranulation marker CD107a among cytotoxic CD56 NK cells, which was reflected in a significant reduction in target cell killing and in decreased production of multiple pro-inflammatory mediators. Interestingly, the activating receptor CD336 was expressed on a higher proportion of CD56 NK cells after IVIG in both KD and autoimmune/inflammatory patients while other NK receptors were increased differentially in each cohort. In autoimmune/inflammatory patients IVIG induced the proliferation marker CD71 on a higher percentage of CD56 NK cells, and in contrast to KD patients, CD107a cells were increased in this subset. Furthermore, when PBMCs were stimulated with IL-2 or antigen in autologous plasma, more of the CD4 T cells of KD patients expressed CD25 after IVIG therapy but fewer cytotoxic T cells were degranulated based on CD107a expression. In summary, IVIG treatment in patients with immune dysregulation has multiple effects, especially on NK cell subsets and CD4 T cells, which are compatible with promoting resolution of inflammation. These novel findings provide insight into the immunomodulatory actions of IVIG in autoimmune and inflammatory conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170153 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.660506 | DOI Listing |
Neuro Endocrinol Lett
September 2025
Department of Biomedical and Life Sciences, Lancaster University, UK.
Alzheimer's Disease (AD) is the leading cause of dementia worldwide, with significant cognitive and behavioural impairments that devastate individuals and their families. Cohort-level findings, demonstrate the broader population-level implications of Sleep and Circadian Rhythm Disruption (SCRD) in AD and underscore the need for early interventions, emphasizing the importance of timely action. However, the mechanism remains unclear.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China.
Background: Ankylosing spondylitis (AS), a chronic inflammatory disorder affecting axial joints, is frequently complicated by uveitis. However, the molecular mechanisms linking AS to secondary uveitis remain poorly understood.
Methods: We integrated transcriptomic datasets from AS (GSE73754) and uveitis (GSE194060) cohorts to identify shared molecular pathways.
Funct Integr Genomics
September 2025
Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
October 2025
Division of Rheumatology and Systemic Inflammatory Diseases, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Aims: Sarcoid myopathy (SaM) is characterised by granulomatous myositis (GM) and can overlap with inclusion body myositis (IBM), a late-onset chronic idiopathic inflammatory myopathy with a still enigmatic pathogenesis. As GM can occur in different clinical contexts, we aimed to examine the histomorphologic features and gene expression profiles in cases of definite SaM that may inform diagnostic and therapeutic considerations.
Methods: We performed a multidimensional characterisation of muscle biopsy specimens from patients with 'pure SaM' (n=17), SaM with concomitant IBM (SaM-IBM) (n=2), including histopathologic and ultrastructural analysis in addition to quantitative real-time polymerase chain reaction.
Int J Dermatol
July 2025
Department of Dermatology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.