Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Most photoacoustic (PA) imaging agents are based on the repurposing of existing fluorescent dye platforms that exhibit non-optimal properties for PA applications. Herein, we introduce PA-HD, a new dye scaffold optimized for PA probe development that features a 4.8-fold increase in sensitivity and a red-shift of the λ from 690 nm to 745 nm to enable ratiometric imaging. Computational modeling was used to elucidate the origin of these enhanced properties. To demonstrate the generalizability of our remodeling efforts, we developed three probes for β-galactosidase activity (PA-HD-Gal), nitroreductase activity (PA-HD-NTR), and H O (PA-HD-H O ). We generated two cancer models to evaluate PA-HD-Gal and PA-HD-NTR. We employed a murine model of Alzheimer's disease to test PA-HD-H O . There, we observed a PA signal increase at 735 nm of 1.79±0.20-fold relative to background, indicating the presence of oxidative stress. These results were confirmed via ratiometric calibration, which was not possible using the parent HD platform.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550804PMC
http://dx.doi.org/10.1002/anie.202105905DOI Listing

Publication Analysis

Top Keywords

general approach
4
approach convert
4
convert hemicyanine
4
hemicyanine dyes
4
dyes highly
4
highly optimized
4
optimized photoacoustic
4
photoacoustic scaffolds
4
scaffolds analyte
4
analyte sensing*
4

Similar Publications

Background: Owing to the unique characteristics of digital health interventions (DHIs), a tailored approach to economic evaluation is needed-one that is distinct from that used for pharmacotherapy. However, the absence of clear guidelines in this area is a substantial gap in the evaluation framework.

Objective: This study aims to systematically review and compare the economic evaluation literature on DHIs and pharmacotherapy for the treatment of depression.

View Article and Find Full Text PDF

Background: The spread of misinformation on social media poses significant risks to public health and individual decision-making. Despite growing recognition of these threats, instruments that assess resilience to misinformation on social media, particularly among families who are central to making decisions on behalf of children, remain scarce.

Objective: This study aimed to develop and evaluate the psychometric properties of a novel instrument that measures resilience to misinformation in the context of social media among parents of school-age children.

View Article and Find Full Text PDF

Tuning the Electrical Property and Electronic Band Structures of Organic Semiconductors via Surface Tension.

J Phys Chem Lett

September 2025

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.

View Article and Find Full Text PDF

Importance: Consumer wearable technologies have wide applications, including some that have US Food and Drug Administration clearance for health-related notifications. While wearable technologies may have premarket testing, validation, and safety evaluation as part of a regulatory authorization process, information on their postmarket use remains limited. The Stanford Center for Digital Health organized 2 pan-stakeholder think tank meetings to develop an organizing concept for empirical research on the postmarket evaluation of consumer-facing wearables.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) are clinically beneficial but associated with high costs that represent a growing challenge for healthcare budgets and may affect affordability, especially in resource-limited settings. Moreover, the healthcare sector is a significant source of greenhouse gas emissions, and medication-related waste-such as that from vial-based therapies-has been identified as a contributing factor. Alternative dosing strategies could reduce the environmental and financial impact of ICI therapy while maintaining clinical safety and efficacy.

View Article and Find Full Text PDF