Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Migration of Boreotropical megathermal taxa during the Oligocene and Miocene played a key role in assembling diversity in tropical regions. Despite scattered fossil reports, the cashew genus Anacardium offers an excellent example of such migration. The fossil woods described here come from localities in Veraguas, Panama mapped as Oligocene-Miocene. We studied, described, and identified two well-preserved specimens using wood anatomical characteristics and completed extensive comparisons between fossil and extant material. The studied fossil woods share several diagnostic features with the modern Anacardium genus, including large solitary vessels, large intervessel-pitting, a simple vessel-ray pitting pattern, and mostly 1-3 seriate rays with large rhomboidal solitary crystals. We propose a new fossil species named Anacardium gassonii sp. nov., that adds an essential piece to the understanding of the historical biogeography of the genus. In addition, our findings confirm previous interpretations of this species' migration from Europe to North America and its crossing through Panama, leading to subsequent diversification in South America. This discovery provides an important link to the historical migration patterns of the genus, supporting the notion of an Eocene migration to the Neotropics via Boreotropical bridges, as well as an Oligocene-Miocene crossing of Central America followed by diversification in South America.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171895 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250721 | PLOS |