Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mesenchymal progenitor cells (MPCs) are a promising cell source for regenerative medicine because of their immunomodulatory properties, anti-inflammatory molecule secretion, and replacement of damaged cells. Despite these advantages, heterogeneity in functional potential and limited proliferation capacity of MPCs, as well as the lack of suitable markers for product potency, hamper the development of large-scale manufacturing processes of MPCs. Therefore, there is a sustained need to develop highly proliferative and standardized MPCs in vitro and find suitable functional markers for measuring product potency. In this study, three lines of pluripotent stem cell (PSC)-derived MPCs with high proliferative ability were established and compared with bone-marrow-derived MPCs using proliferation assays and microarrays. A total of six genes were significantly overexpressed (>10-fold) in the highest proliferative MPC line (CHA-hNT5-MPCs) and validated by qRT-PCR. However, only two of the genes (MYOCD and ODZ2) demonstrated a significant correlation with MPC senescence in vitro. Our study provides new gene markers for predicting replicative senescence and the available quantity of MPCs but may also help to guide the development of new standard criteria for manufacturing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225148PMC
http://dx.doi.org/10.3390/cells10061301DOI Listing

Publication Analysis

Top Keywords

mesenchymal progenitor
8
progenitor cells
8
product potency
8
mpcs
7
identification putative
4
markers
4
putative markers
4
markers predict
4
predict vitro
4
vitro senescence
4

Similar Publications

Human cord blood (CB) myeloid progenitor reprogramming to a high-fidelity human induced pluripotent stem cell (hiPSC) state can be achieved using non-integrating episomal vectors and stromal signals. These conventional, primed CB-hiPSC lines can subsequently be chemically reverted with high efficiencies to a blastomere-like Tankyrase/PARP Inhibitor-Regulated Naive Stem Cell (TIRN-SC) state with functional totipotency. PARP-regulated TIRN-SCs are human stem cells with high epigenetic plasticity, stable epigenomic imprints, and have greater differentiation potency than conventional, lineage-primed hiPSCs.

View Article and Find Full Text PDF

Adipose stromal cells (ASCs) are perivascular mesenchymal progenitors of adipose tissue. In cancer patients, ASCs can mobilize and migrate to the tumor, where they subsequently play an important role in cancer progression. This biological process involves the conversion of recruited ASCs into cancer-associated fibroblasts (CAFs).

View Article and Find Full Text PDF

CXXC Finger Protein 1 drives BMP signaling and progenitor cell differentiation during limb development.

Dev Biol

September 2025

Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115 USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115 USA; Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA 02138 USA. Electronic address:

The mechanisms mediating endochondral bone formation remain incompletely understood. Here, we show that CXXC Finger Protein 1 (CFP1) is required for the onset of chondrogenesis during forelimb development. CFP1-deficient mesenchymal progenitor cells (LMPs) retain an immature molecular signature with elevated FGF and SHH signaling and repressed BMP signaling, in part, due to (1) reduced expression of type I BMP receptors, (2) reduced Smad1 protein levels and (3) an altered extracellular niche.

View Article and Find Full Text PDF

Mesenchymal progenitor cells in perivascular niches: forerunners of mesenchymal stem cells and players in tissue scarring and regeneration.

Vascul Pharmacol

September 2025

Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA, Los Angeles, CA 90095, USA; Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK. Electronic address:

The walls of all embryonic, foetal, and adult blood vessels contain mesodermal progenitors, distributed as pericytes in capillaries and micro vessels, and fibroblastic cells in the tunica adventitia of larger veins and arteries. Following dissociation, selection by flow cytometry, and culture, those perivascular cells turn into bona fide mesenchymal stem cells of which they possess all attributes. In vivo, the adventitial cellular niche supports several spatially-organized subsets of mesodermal progenitors biased toward either osteo-, adipo-, or fibrogenesis, and dominated by more primitive, multi-lineage stem-like cells.

View Article and Find Full Text PDF

Single-cell glycome and transcriptome profiling uncovers the glycan signature of each cell subpopulation of human iPSC-derived neurons.

Stem Cell Reports

August 2025

Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. Electronic address:

Human induced pluripotent stem cell (iPSC)-derived neurons are often heterogeneous, posing challenges for disease modeling and cell therapy. We previously developed single-cell glycan and RNA sequencing (scGR-seq) to analyze the glycome and transcriptome simultaneously. Here, we applied scGR-seq to examine heterogeneous populations of human iPSC-derived neurons.

View Article and Find Full Text PDF