A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Graphene Quantum Dots from Carbonized Coffee Bean Wastes for Biomedical Applications. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent studies concerning graphene quantum dots (GQDs) focus extensively on their application in biomedicine, exploiting their modifiable optical properties and ability to complex with various molecules via π-π or covalent interactions. Among these nascent findings, the potential therapeutic efficacy of GQDs was reported against Parkinson's disease, which has to date remained incurable. Herein, we present an environmentally friendly approach for synthesizing GQDs through a waste-to-treasure method, specifically from coffee waste to nanodrug. Consistent with the previous findings with carbon fiber-derived GQDs, the inhibitory effects of coffee bean-derived GQDs demonstrated similar effectiveness against abnormal α-synuclein fibrillation and the protection of neurons from relevant subcellular damages. The fact that a GQDs-based nanodrug can be prepared from a non-reusable yet edible source illustrates a potential approach to convert such waste materials into novel therapeutic agents with minimal psychological rejection by patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228242PMC
http://dx.doi.org/10.3390/nano11061423DOI Listing

Publication Analysis

Top Keywords

graphene quantum
8
quantum dots
8
gqds
5
dots carbonized
4
carbonized coffee
4
coffee bean
4
bean wastes
4
wastes biomedical
4
biomedical applications
4
applications studies
4

Similar Publications