A Brief Review of the Mechanisms of β-Cell Dedifferentiation in Type 2 Diabetes.

Nutrients

College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Korea.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetes is a metabolic disease characterized by hyperglycemia. Over 90% of patients with diabetes have type 2 diabetes. Pancreatic β-cells are endocrine cells that produce and secrete insulin, an essential endocrine hormone that regulates blood glucose levels. Deficits in β-cell function and mass play key roles in the onset and progression of type 2 diabetes. Apoptosis has been considered as the main contributor of β-cell dysfunction and decrease in β-cell mass for a long time. However, recent studies suggest that β-cell failure occurs mainly due to increased β-cell dedifferentiation rather than limited β-cell proliferation or increased β-cell death. In this review, we summarize the current advances in the understanding of the pancreatic β-cell dedifferentiation process including potential mechanisms. A better understanding of β-cell dedifferentiation process will help to identify novel therapeutic targets to prevent and/or reverse β-cell loss in type 2 diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151793PMC
http://dx.doi.org/10.3390/nu13051593DOI Listing

Publication Analysis

Top Keywords

β-cell dedifferentiation
16
type diabetes
16
β-cell
11
increased β-cell
8
dedifferentiation process
8
diabetes
6
review mechanisms
4
mechanisms β-cell
4
dedifferentiation
4
type
4

Similar Publications

Purpose: Liposarcoma (LPS) is the most common soft tissue sarcoma. Well-differentiated LPS (WDLPS) can progress to dedifferentiated LPS (DDLPS), a more aggressive form with higher metastatic potential and poor response to existing therapies. Progress in understanding and treating LPS has been limited.

View Article and Find Full Text PDF

Background: Voghera pepper (VP) extracts were demonstrated to have anti-oxidant ability in several cell types.

Purpose: This study aimed to assess whether VP-extracts could lower oxidative stress and modulate thyroid cancer (TC) cells behavior .

Methods: Extracts were analyzed using the LC-DAD-MS system.

View Article and Find Full Text PDF

Targeting USP21 to inhibit abdominal aortic aneurysm progression by suppressing the phenotypic transition of vascular smooth muscle cells.

Cell Rep Med

September 2025

Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong U

Abdominal aortic aneurysm (AAA) is a life-threatening condition lacking effective treatment. We investigate the role of the deubiquitinating enzyme USP21 in AAA development. Proteomic analysis reveals significant upregulation of USP21 in murine and human abdominal aortic tissues.

View Article and Find Full Text PDF

Background: Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. For stratification purposes, rhabdomyosarcoma is classified into fusion-positive RMS (alveolar rhabdomyosarcoma) and fusion-negative RMS (embryonal or spindle cell/sclerosing, FN-RMS) subtypes according to its fusion status. This study aims to highlight the pathologic and molecular characteristics of a cohort of FN-RMS using a targeted NGS RNA-Seq assay.

View Article and Find Full Text PDF

Vitamin D Binding Protein, a Ligand of Integrin beta 1, Motivates Both Tumor Cells and Schwann Cells to Promote Perineural Invasion in Pancreatic Ductal Adenocarcinoma.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Perineural invasion (PNI) is a common pathological characteristic of pancreatic ductal adenocarcinoma (PDAC), closely linked to postoperative recurrence, metastasis, and unfavorable prognosis. Nevertheless, the precise mechanisms that govern PNI in PDAC remain poorly elucidated. Here, group-specific component protein (GC) is identified as one of the most significantly upregulated genes related to PNI, primarily derived from malignant ductal cells compared to other cell types.

View Article and Find Full Text PDF