98%
921
2 minutes
20
The ability of cells to convert mechanical perturbations into biochemical information is an essential aspect of mammalian physiology. The molecules that mediate such mechanotransduction include mechanically activated ion channels, which directly convert mechanical inputs into electrochemical signals. The unifying feature of these channels is that their open probability increases with the application of a mechanical input. However, the structure, activation profile and sensitivity of distinct mechanically activated ion channels vary from channel to channel. In this review, we discuss how ionic currents can be mechanically evoked and monitored in vitro, and describe the distinct activation profiles displayed by a range of mammalian channels. In addition, we discuss the various mechanisms by which the best-characterized mammalian, mechanically activated ion channel, PIEZO1, can be modulated. The diversity of activation and modulation of these mammalian ion channels suggest that these molecules may facilitate a finely controlled and diverse ability to sense mechanical inputs in mammalian cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.16041 | DOI Listing |
Int J Pharm X
June 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).
View Article and Find Full Text PDFBiomed Rep
November 2025
Neurology Department, Neuroscience Center, King Fahad Specialist Hospital-Dammam, Dammam 32253-3202, Saudi Arabia.
Endovascular mechanical thrombectomy (MT) is a recommended treatment for acute ischemic stroke due to large vessel occlusion (LVO). The objective of the present study was to evaluate the impact of vascular risk factors on the outcome of MT outcomes in patients with stroke with LVO and to determine the prevalence of structural epilepsy in these patients. This was a retrospective cohort study involving patients with stroke between 20 and 80 years of age with LVO who underwent MT.
View Article and Find Full Text PDFMater Today Bio
October 2025
Yunnan Key Laboratory of Breast Cancer Precision Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, 650500, Yunnan, China.
Achieving precise intratumoral accumulation and coordinated activation remains a major challenge in nanomedicine. Photothermal therapy (PTT) provides spatiotemporal control, yet its efficacy is hindered by heterogeneous distribution of PTT agents and limited synergy with other modalities. Here, we develop a dual-activation nanoplatform (IrO-P) that integrates exogenous photothermal stimulation with endogenous tumor microenvironment (TME)-responsive catalysis for synergistic chemodynamic therapy (CDT) and ferroptosis induction.
View Article and Find Full Text PDFEur Heart J Case Rep
September 2025
Cardiovascular Department, Tokushima University Hospital, 7708503 Kuramoto-cho, Tokushima 2-50-1, Japan.
Background: The incidence of cancer therapy-related cardiac dysfunction is increasing with the growing number of breast cancer patients. In particular, patients with active cancer combined with severe irreversible cardiac dysfunction present significant challenges in treatment decision-making.
Case Summary: A 40-year-old woman with Stage II HER-2-positive breast cancer received anthracycline followed by HER2-targeted agents.
J Oral Biol Craniofac Res
August 2025
Department of Prosthodontics and Crown & Bridge, SRM Dental College, Ramapuram Campus, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India.
Background Of The Study: known for its bioactive phytochemicals and antimicrobial potential; however, studies evaluating its outcome on the color, mechanical properties and antimicrobial activity of 3D-printed provisional dental resins are lacking. So this study evaluate the effect of seed extract incorporation on the color assessment, flexural strength, compressive strength, microhardness and antimicrobial activity of 3D-printed provisional crown and bridge resin.
Materials And Methods: A total of 240 samples were prepared, with 60 samples allocated to four groups based on 0 %, 1.