Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Naturally occurring peroxidases are important for living organisms and have manifold utility in industries. However, lack of stability in harsh reaction conditions hinders wide applicability of such enzymes. Thus, suitable alternative is vital which can endure severe reaction conditions. As a substitute of natural peroxidase, herein, biopolymer-based polyelectrolyte complexes (PECs) coordinated with Fe is proposed as macromolecular peroxidase mimicking systems. Three PECs were engineered via complexation of protonated chitosan and alginate with Fe (Fe-PEC), Fe (Fe-PEC), and FeO (FeO-PEC), respectively. Computational study showed the Fe-PEC was highly stable with abundant electrostatic and intramolecular hydrogen bonding interactions. The versatility of the Fe-PECs as artificial peroxidase biocatalysts was probed by two types of peroxidase assays - ABTS oxidation in buffer systems (pH 4.0 and 7.0) and pyrogallol oxidation in organic solvents (acetonitrile, ethyl acetate and toluene). Overall, Fe-PEC showed remarkably high peroxidase activity both in aqueous buffers and in organic solvents, whereas, FeO-PEC showed least catalytic activity. Finally, as a proof of concept, the ability of the biocatalyst to carry out deep oxidative desulphurization was demonstrated envisaging removal of dibenzothiophene from model fossil fuel in a sustainable way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.05.141 | DOI Listing |