A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Understanding occupational heat exposure in the United States and proposing a quantifying stress index. | LitMetric

Understanding occupational heat exposure in the United States and proposing a quantifying stress index.

Int Arch Occup Environ Health

Department of Civil, Construction, and Environmental Engineering, The University of Alabama At Birmingham, Hoehn Engineering Building, Room Number 140, 1075 13th Street South, Birmingham, 35294-4440, AL, USA.

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Millions of workers exposed to the outdoor environment are extremely susceptible to extreme heat. Although several articles analyzed heat-related illnesses, injuries, fatalities at the country level, few investigated regional and state statistics especially for OSHA Region 4 and the state of Alabama, U.S, which we explored in this study.

Methods: We studied the number of heat-days over 90 °F (32.2 °C) heat-index within our study area, analyzed heat-related injury and illnesses to calculate their incidence rate during 2015 to 2019, observed the nature of such incidents, their monthly occurrence, and incidence trend over average air temperature. We conducted a comparative analysis of heat-related fatalities between construction and all industries. The existing heat regulations by OSHA and some state agencies have also been summarized.

Results: We observed the highest mean, maximum heat-days and injury-illness rate in the south and southeast part of Region 4; increase in incidence rate from 0.03 in 2017 to 0.28 per 10,000 employees in 2018 for the contiguous U.S; highest injury-illness rate (HIR) in OSHA Region 1, 4 and 6; highest HIR in Lee, Montgomery, Mobile and Madison counties of Alabama; 34.7% (construction) and 31.3% (all industries) of all cases experiencing nonclassifiable heat-light effects; high fatalities in construction industry with a trend of 1 death/5 years; increased mortality in all occupations with 1 death/2.4 years. We also proposed a Heat-Stress Index (HSI) as a routine heat-stress measure on jobsite.

Conclusion: The findings from this research and the proposed index can help in understanding heat-related risk at a regional level and implementing workplace interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00420-021-01711-0DOI Listing

Publication Analysis

Top Keywords

analyzed heat-related
8
osha region
8
incidence rate
8
fatalities construction
8
injury-illness rate
8
understanding occupational
4
occupational heat
4
heat exposure
4
exposure united
4
united states
4

Similar Publications